IP Fast Reroute: Practical NotVia addressing method with
Improved ED-NotVia

ABSTRACT

When a failure occurs in a network, it takes routing pro-
tocols hundreds of milliseconds to recover. This is intol-
erable for real-time applications. Thus, many researchers
propose the IP Fast Reroute (IPFRR) framework to reduce
transmission delay during the failure. As an IPFRR scheme,
NotVia provides 100% protection coverage for single-node
or single-link failure. However, NotVia introduces nontrivial
computing and memory cost. Although Early-Decapsulation
NotVia (ED-NotVia) can greatly reduce computing and mem-
ory cost compared with NotVia, it still cannot eliminate all
unnecessary NotVia addresses.

In this paper, we improve ED-NotVia in two aspects. We
first provide the practical NotVia addressing method. With
more failure information embodied in the address, a more
precise early decapsulation can be achieved, allowing the
protection path length to be further shortened. We then re-
define the “related-probability” and “related-condition”, by
which all the unnecessary NotVia addresses are eliminated.
We simulate our scheme of Improved ED-NotVia with com-
prehensive topologies generated by BRITE. The results show
that with limited computation overhead, our scheme reduces
the memory overhead of NotVia by 53%. Meanwhile, no
protection coverage is sacrificed.

1. INTRODUCTION

With the popularity of the Internet, more and more
online applications are emerging. Among these appli-
cations, the real-time ones, including VolP, live stream,
online gaming, etc., require high-quality transmission
service. Although IP routing protocols are designed
for robust operation and can recover data transmission
when network topology changes, these protocols recover

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AINTEC2011, November 9—-November 11, 2011, Bangkok, Thailand.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

in hundreds of milliseconds or more [?, 7, ?]. But these
real-time applications can only tolerate to transmission
delay not over tens of milliseconds. Thus, network sur-
vivability becomes one of an important topic for today
and future network routing.

IPFRR is an IP-based emerging technology that pro-
vide protection for data transmission when failure oc-
curs by pre-compute alternative routing paths locally.
IPFRR scheme can reduce transmission delay to tens
of milliseconds which is acceptable for real-time appli-
cations. It can also suppress transient failures, thereby
network routing stability can be improved.

NotVia uses special addresses, called NotVia addresses,
to encapsulate packet and bypass a failure node or link.
In other words, assume that for some source router S,
destination router D, next-hop from S to D is F, next-
hop from F to D is T (or next-next hop from S to
D is T): when the router F or the link from S to F
fails, S uses NotVia address to encapsulate packets and
forward packets to other neighbor node N instead of
F. The packets will reach T not via F, then T will
decapsulate the packets and use normal shortest path
continue forward packets to D. NotVia address usually
be written in form of T, which means go to T not via
F. NotVia address is an important technique for NotVia
mechanism, but there is no practical NotVia addressing
method so far [?, ?, ?].

Figure 1 illustrates how NotVia and ED-NotVia work.
The shortest path from S to D is S-F-T-R-D. When the
link between S and F fails, S cannot send the packet to
F, but uses alternative route instead. For NotVia, the
protection path from S to D is S-N2-R-T-R-D. In this
case, transient loop exists. R does not need to forward
packet back to T, it can decapsulate packet and use nor-
mal route forward packet to D. Thus, ED-NotVia will
decapsulate packet when arriving at R and continue for-
ward packet to D, protection path length is shorter than
original NotVia. Because NotVia and ED-NotVia treat
a failure as single-node failure by default, even if the
failure maybe single-link failure. In this example, F' it-
self does not fail, but the link between S and F fails. N2
can make earlier decapsulation and uses normal short-

/—)NotVia

—> ED-NotVia

Figure 1: An example of NotVia and ED-NotVia

est path to forward packet via F' to D, protection path
length will be more shorter. This can be achieved as
describe in section 3.

The main purpose of this paper is to improve ED-
NotVia in two aspects. First, according to the proper-
ties of AS and NotVia addresses, we provide the new
practical NotVia addressing method (see below in sub-
section 3.2). NotVia addresses can carry some useful in-
formation, such as failure node F' and tunnel-end node
T. Thereby, the router R can make early-decapsulation
more precise and reduce protection path stretch. Then,
we redefine “related-probability” in ED-NotVia algo-
rithm to improve protection coverage with the same pa-
rameter p (see section 3.3). And we introduce “related-
condition” to our improved algorithm, such that each
node will eliminate all unnecessary NotVia address.

We evaluate the performance of our Improved ED-
NotVia by simulation based on topologies generated
from BRITE. The result show:

e At p =1 (for each node, all other nodes will partic-
ipate in protection paths computation), Improved
ED-NotVia can eliminate unnecessary NotVia ad-
dress kept by each node up to 53% in average.

e At p =1, 70% single-link failure and 30% single-
node failure, protection path stretch will be shorten
by 1% to 2% compared to ED-NotVia.

e When threshold p varies (0 < p < 1), overall pro-
tection coverage slightly better than ED-NotVia.

The remaining part of the paper is organized as fol-
lows. Section 2, we further describe NotVia and some
improvements, especially ED-NotVia. Section 3, we in-
troduce how we improve ED-NotVia performance as
mention above. Section 4, we evaluate the results, com-
pare performance between ED-NotVia and ED-NotVia.
Section 5, we conclude our paper in this section. Note
that in this paper we only discuss undirected 2-connected
topology.

2. BACKGROUND AND RELATED WORK

There are many IPFRR mechanisms, such as Loop-

Free Alternate (LFA)[?], Tunnel, NotVia[?], etc. LFA is
one of major research direction of IPFRR mechanisms
because it is more lightweight compared to other mech-
anisms. But LFA fatal disadvantage is that it cannot
guarantee protection coverage, the protection coverages
are vary depend on topology. In worst case (even num-
ber nodes in ring topology), LFA can only provide ﬁ
of protection coverage [?].

On the other hand, NotVia mechanism can provide
100% protection coverage, but it introduces nontrivial
memory and computing cost. NotVia mechanism uses
NotVia address to encapsulate packets and bypass a
failure. All NotVia addresses in network is two times of
number of links, this memory cost is unacceptable for
real environment. Because NotVia address Tr means
the packets must go to T not via F. So, T repre-
sents different topology from original one. Any node
R needs to exclude F' from topology and re-computes
SPT for Tr. This introduces nontrivial computing cost
to NotVia.

There are some papers discuss how to improve NotVia’s
performance. In [?], authors try to improve NotVia by
3 techniques: NotVia aggregation, prioritization and
rNotVia. However, the aggregation approach can re-
duce only part of unnecessary NotVia address entries,
but requires each router be configured with an IP pre-
fix that covers both its interface address and NotVia
addresses, introduces new problems to network admin-
istrator. In [?], authors use concept of redundant trees.
Lightweight can significantly decrease the number of
NotVia addresses. However, this mechanism requires
forwarding two copies of one packet by two different
routes, decreasing the efficiency of bandwidth utiliza-
tion.

ED-NotVia[?] is one of NotVia mechanism improve-
ment, it greatly reduce computing and memory cost,
but still, ED-NotVia cannot eliminate all unnecessary
NotVia addresses. ED-NotVia already introduced “special-
condition” and “related-condition” to filter unnecessary
NotVia addresses. But ED-NotVia algorithm did not
actually use “related-condition” to filter unnecessary
NotVia addresses, but use “related-probability” instead.
We will discuss more details in subsection 3.3. After us-
ing “related-condition” in Improved ED-NotVia, we can
eliminate all unnecessary NotVia address.

3. IMPROVED ED-NOTVIA

In this section, we first discuss the properties of NotVia
address, traditional NotVia addressing method and our
new NotVia addressing method, show how new address-
ing method help to make decapsulate decision more
precise. We then describe how we redefine “related-
probability” and how to determine “related-condition”.
After that, we will provide an Improved ED-NotVia al-
gorithm to save only necessary NotVia addresses and

compute protection route for them. Finally, we de-
scribe the packets forwarding process with Improved
ED-NotVia mechanism.

3.1 NotVia address and traditional address-
ing method

As mentioned above, NotVia address is the special
address used to specify where is next-next hop T of
source node (tunnel end) and the failure node F' (or the
link to F'). By NotVia address concept, NotVia address
represent different topology from original topology, the
only difference is to exclude F' from current topology.

Traditional addressing method treats NotVia address
like a virtual node and directly assigns an address to this
virtual node. The virtual node also needs to advertise
its address and routing information over the network,
so the normal nodes know the existent and can compute
route to the virtual node. Because maximum number
of NotVia addresses in topology is two times of number
of links, without any aggregation approach, all NotVia
addresses needs to be advertised over network, occupy
significant bandwidth.

From Figure 1, let some nodes’ addresses be: F -
10.0.1.1; T - 10.0.1.2; R - 10.0.1.3. One simple address-
ing method is directly assigns normal address. To iden-
tify NotVia address and normal address, administrator
can mark some different NotVia address byte from nor-
mal address. For example: T - 10.1.1.1; Fp - 10.1.1.2.
Or mark some header bits if this is NotVia address. Al-
though, the router can identify if address is normal ad-
dress or NotVia address, but the router does not know
tunnel end T and the failure node F. Because the router
cannot get necessary information from NotVia address,
so the router cannot make precise early decapsulation.
For NotVia address aggregation, network administrator
needs to carefully design NotVia address.

3.2 Practical NotVia addressing method

We first analyze the properties of AS:

e Generally, there are hundreds of routers in AS (at
most in thousands routers). The number of routers
in AS should be less than 65536 (216).

e Based on IP address assigning properties, first two
bytes of address usually are the same (such as
10.0.1.1, 10.0.1.2, etc)

e NotVia addresses are local addresses (loopback),
not advertise through outer network.

From our analysis above, our new practical NotVia

addressing method is described as below :

1. Discard the same part of address (first two bytes,
for example).

2. For NotVia address T, use different part of ad-
dress (last two bytes, for example) to assemble
NotVia address in form t1.t2.f1.f2. For example,
from Figure 1: Tp - 1.2.1.1; Ry - 1.3.1.2.

3. If NotVia address confuse with normal address, we
may mark some bits in the header of NotVia ad-
dress packet, to identify normal address and NotVia
address.

We put T before F because in any node R’s SPT
T has only one parent node F, when searching FIB, if
prefix (first two bytes) are matched, means T entry is
in FIB, else TF entry is not in FIB. But F' may have
many children, to search if NotVia address entry is in
FIB or not, all bytes must be matched. Thus, put T
before F' is better way for FIB searching.

The benefit from our new NotVia addressing method,
NotVia address can contain more informations about
tunnel end 7T and the failure node F. The neighbor
routers of F' can determine if F' itself fails or the link S
to F fails. Any router R can make early decapsulation
more precise if needed.

3.3 Decapsulate condition

Any router R in network will periodically exchange

routing information with neighbor routers, neighbor routers

know if R still active or not. For example, from Figure
1, when S wants to send packet to D but S cannot cur-
rently communicate with F. S encapsulates the packet
with Tr address and send packet to N2. N2 receives
the packet and checks NotVia address, N2 knows that
tunnel end is T and F still active (only link between S
and F fails). In this case, the failure type is link failure
not node failure, N2 can make a decision to decapsulate
the packet or not.

After F neighbor router R receives packet with NotVia
address and identifies the failure type is link failure,
when R can make early decapsulation? Actually, two
possibilities exist after R decapsulate the packet:

e F is not in route(R, D) (shortest path from R to
D). R can make early decapsulation and use nor-
mal path to forward the packet. The packet will
not be sent back to S and back to R. Because
route(S, D) pass through F, contradicts with the
premise. In this case, R can make early decapsu-
lation and forward packet.

e Fisin route(R, D). After decapsulation, the packet
maybe forward back to S or maybe not. To pre-
vent the packet to be sent back to S and back to R
itself, the relation among S, F and R must satisfy
below condition:

d(R, F) < d(R, S)+ d(S, F) (1)

Before decapsulating the packet, R does not know
which is exact destination D. According to above anal-
ysis, we only need to worry about F in route(R, D) case,
decapsulation will be problem only if S, F' and R do not
satisfy equation (1). To be easier for implementation,
we may use “route(R, F')’s next hop is F itself” instead
of equation (1).

~~ e

Figure 2: ED-NotVia’s “related-probability”

Thus, sum up with conditions introduced in ED-NotVia,

Decapsulate conditions are:
1. Tr does not exist in NotVia FIB. (from ED-NotVia)
2. R is F neighbor router and equation (1) is satis-
fied. (new condition)
We will describe packet forwarding process in subsec-
tion 3.6.

3.4 ‘“related-probability” and “related-condition”

ED-NotVia proposed “special-condition” and “related-
condition” to reduce unnecessary NotVia addresses:

e special-condition: if the next hop of route(R, Tr)
is the same with the next hop of route(R, T), then
Tr is ordinary to R; else, T is special to R.

e related-condition: if R is not in any protection
path from any S to T, then TF is unrelated to R;
else, T is related to R.

ED-NotVia algorithm used “special-condition” to fil-
ter unnecessary NotVia address, it did not use “related-
condition”, but used “related-probability” instead.

“Related-probability” uses the intuitive concept that
the probability of farther nodes’ NotVia address sent to
R is quite small, and vice versa. As shown in Figure 2,
after S detect a failure and encapsulate packet, assume
there are k nodes (R;) between S and R, and R;’s degree
is d;. So the probability that Tr will be sent to R is
1/(dy * dg * ... % dy,) (the probability at R; is 1/d;).

Although this intuitive concept may not be correct in
all cases (ring topology, for example), evaluation result
from ED-NotVia and our Improved ED-NotVia show
that this concept works very well in practical. Hence
we decide to continue using this “related-probability”
concept. We redefine “related-probability”, not only
use node’s degree in probability computation but also
consider the weight of link in probability computation.
Because in real environment, the cost of links in topol-
ogy is not uniform, the links on shortest path should
be smaller compared to others. Thus, our “related-
probability” at R; define as follow:

We consider using “related-condition” in Improved
ED-NotVia algorithm. Because in undirected graph,
the shortest paths from any node A to a node B is
the same SPT rooted at B. To check if R is in any
protection path route(S, Tr): exclude F' from topology
and compute SPT rooted at T. If R has children, it
means R is in the shortest path from its children to 7.
In the other words, R is related to Tr. We call the SPT
rooted at T as “reverse-SPT” or “rSPT”.

3.5 Algorithm

Now, our Improved ED-NotVia algorithm to find all
necessary NotVia addresses and compute protection paths
described as follow:

Algorithm 1 Improved ED-NotVia

Require: R, SPT rooted at R and threshold p
Ensure: all necessary NotVia addresses and protection
paths

1: if 0 < p <1 then
2: threshold + 1 —p
3: else
4: threshold < 0
5: end if
6: root < SPT.root,root.q < 1
7: for all ch € root.children do
8 ch.q + q; // from equation (2)
9: ®.enqueue(ch)
10: end for
11: while ®.empty() == false do
12: F + ®.dequeue()
13: iSPT « iSPF(SPT,F)[?] // SPT without F
14: for all T' € F.children do
15: if F.q < threshold then
16: continue // not related(probability)
17: end if
18: T.q+ q *Fq
19: O .enqueue(T)
20: nexthopTr < getNextHop(iSPT,T)
21: if T.nexthop == nexthopTr then
22: continue // not special
23: end if
24: rSPT < SPF(T,F) // compute SPT rooted
at T without F
25: if R € rSPT,R.children.empty() == true
then
26: continue // not related(conditon)
27: end if
28: R.NotViaFIB.add(Tr)
29: end for

30: end while

Figure 3 shows SPT rooted at R. The algorithm is
to traverse through SPT by breadth-first order, start-
ing from children of R. Start from A, we assume A

Figure 3: SPT root at R with NotVia addresses

is the failure node, then compute iSPT without A in
topology. If D4 satisfy “related-probability”, enqueue
D’s children; else go to E. If D4 satisfy both “special-
condition” and “related-condition” then add D4 to R
NotVia FIB; else discard this NotVia address.

3.6 Packet forwarding process

The packet forwarding process of Improved ED-NotVia

is described as follow:

1. If the packet destination address is NotVia ad-
dress, then go to step 4.

2. If destination address is the same as current node
address. The packet is already reached destina-
tion. End process.

3. From normal FIB find next hop. If next hop is
reachable, then forward the packet and go to step
7; else, encapsulate the packet with NotVia ad-
dress.

4. (NotVia address case) If satisfy one of conditions
below, then make decapsulation :

e Already reach tunnel end.

e This T does not exist in NotVia FIB.

e This node is F’s neighbor, F itself didn’t fail
and satisfy equation 1.

5. From NotVia FIB find next hop, forward the packet
and go to step 7.

6. Decapsulate the packet. From normal FIB find
next hop. If next hop is reachable, then forward
the packet; else, drop the packet and end process.

7. If successfully forward packet, then decrease TTL
by 1. Repeat forwarding process.

4. EVALUATION

In this section, we show how our new practical NotVia
addressing method benefits to NotVia mechanisms and
compare our Improved ED-NotVia performance with
original ED-NotVia.

4.1 Methodology

We use C++ to implement the simulator that com-
putes FIBs, generates failures and simulates packet for-
warding process. First step, we compute normal FIBs,
ED-NotVia FIBs and Improved ED-NotVia FIBs from
topologies generate by BRITE. Second step, we simu-
late a failure in network by randomly pick 400 sets of
{S, D, F} for each topology. According to [?], in real
world more than 70% of failures are single-link failures.
Thus, our simulation will use proportion of failures :
70% are single-link failures and 30% are single-node
failures. Since we only discuss 2-connected topology,
we will discard the set of {S, D, F} if exclusion of F'
affected topology connectivity. Last step, we simulate
the packet forwarding process by using loop lookup next
hop from FIBs hop-by-hop, to ensure that our simula-
tion would be as real as possible.

We compare the performance of ED-NotVia and Im-
prove ED-NotVia in 3 aspects: threshold p and protec-
tion coverage relation, unnecessary NotVia addresses
eliminated by “related-condition” and protection path
stretch.

4.2 p and protection coverage

ED-NotVia and Improved ED-NotVia use threshold p
to determine when to discard low “related-probability”
NotVia addresses. In the other words, while traversing
R’s SPT to find NotVia addresses and compute pro-
tection path process, if some A’s ¢ value is less than
threshold p, A and its children would not be enqueued
to checking queue and be discarded.

Since low “related-probability” NotVia addresses do
not mean these NotVia addresses are unnecessary, the
protection coverage depends on threshold p. If p is
too small, there should be many wrong regarded-as-
unnecessary NotVia addresses. If p is 1, this means all
necessary NotVia addresses will be kept. In real sit-
uation, the network administrator can do a trade-off
by sacrificing a little protection coverage to gain more
memory space, Or vice-versa.

In this test, we set p value vary from 0 to 1 (excluded)
in different topologies and observe protection coverage
percentage.

As shown in Figure 4, Improved ED-NotVia’s overall
protection coverage is slightly better than ED-NotVia.
Because, protection coverage depends on the number of
necessary NotVia addresses kept by R, so our “related-

probability” perform better in pruning regarded-as-unnecessary

NotVia addresses with only little improvement.

4.3 Unnecessary NotVia addresses

In this aspect, we use unnecessary NotVia addresses
to measure memory cost efficiency. Unnecessary NotVia
addresses ratio is the number of unnecessary NotVia
addresses divide by the number of all NotVia addresses

100 - 100 - 100
° — © — ED-NotVia © — © — ED-NotVia ° — © — ED-NotVia
< 80| —k— Improved ED-NotVia 2 —*— Improved ED-NotVia 2 80| —*— Improved ED-NotVia
9] 9] 5]
3 3 3
o () o
< c c
k<] i< o
3] S 3]
2 2 2
S e IS
o [=8 o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
parameter p parameter p parameter p
(a) n=50, m=2 (b) n=80, m=2 (¢) n=120, m=3
Figure 4: p and protection coverage
60 . 60 60 .

2 —©— ED-NotVia o —©&— ED-NotVia o —©— ED-NotVia

[IS g

%] (%] 0
> %40 > %40 - % 40
® = T = c =
n o 0n o 0n o
n T n o (e}
Q © L © Q ©
8 ©20 g &20 g 520
€2 €3> =3
538 5% 5%

z =4 P4

od 0 0%
0.9 092 094 096 0.98 1 0.9 092 094 096 0.98 1 0.9 092 094 096 0.98 1
parameter p parameter p parameter p
(a) n=50, m=2 (b) n=80, m=2 (¢) n=120, m=3

Figure 5: p and average unnecessary NotVia addresses ratio

kept by current node. Thus, unnecessary NotVia ad-
dresses ratio directly represents current node memory
utilization.

Figure 5 shows threshold p starting from 0.9 to 1
and unnecessary NotVia addresses ratio relation. While
p value is small, only NotVia addresses“near” root R
kept, and most of them are necessary NotVia addresses.
When p value becomes bigger, the number of unneces-
sary NotVia addresses becomes bigger too.

Figure 6 show unnecessary NotVia addresses ratio
of ED-NotVia without pruning some NotVia addresses
by “related-probability” (p=1). We first test unnec-
essary NotVia addresses ratio of different topologies
with different number of nodes and links. When topol-
ogy become larger (more nodes and links), unnecessary
NotVia addresses ratio also increase. We then study
NotVia addresses ratio of different topologies with the
same number of nodes but different number of links.
From the result, there is no significant different between
these topologies. Thus, the number of nodes should af-
fect unnecessary NotVia addresses ratio more than the
number of links. Our Improved ED-NotVia can save
memory up to 53% compared with original ED-NotVia
mechanism.

4.4 Protection path stretch

By introducing our new NotVia addressing method,
the neighbor routers of F' can identify failure type. In

70
50+
40+
301
20+
10

unnecessary memory percentage

topologies

(a) 1.n=50 , m=2; 2.n=80 , m=2; 3.n=120 ,
m=3; 4.n=150 , m=4; 5.n=280 , m=4

S 70

S 60! I =0-Notvia

o

8 s0t .

>

5 a0l

2 40

€ 30

>

g 20f

%]

8 10t

[0}

c

€ 0

> o 1 2 3 4 5 6
topologies

(b) 1.n=250 , m=2; 2.n=250, m=3; 3.n=250,
m=4; 4.n=250 , m=5; 5.n=250 , m=6

Figure 6: average unnecessary NotVia addresses
ratio on different topologies (p = 1)

11

1.09 I =0-Notvia
[]improved ED-NotVia

1.08

1.07

1.06

1.05

1.04

path stretch ratio (compare to SPT)

0 1 2 3 4 5 6
topologies

(a) 1.n=50 , m=2; 2.n=80 , m=2; 3.n=120 ,

m=3; 4.n=150 , m=4; 5.n=280 , m=4

s

11

1.09 I E0-Notvia
[]improved ED-NotVia

1.08
1.07
1.06

1.05

1.04

path stretch ratio (compare to SPT)

0 1 2 3 4 5 6
topologies

(b) 1.n=250 , m=2; 2.n=250, m=3; 3.n=250,

m=4; 4.n=250 , m=5; 5.n=250 , m=6

Figure 7: average protection path stretch on dif-
ferent topologies (p = 1)

single-link failure cases (more than 70% of all failures)
[?], we can make decapsulation more precise and get
benefit from our new NotVia addressing method.

Protection path stretch is the ratio between protec-
tion path length and the exact shortest path length after
exclude F from topology. From Figure 7, although orig-
inal ED-NotVia mechanism performs well in reducing
protection path stretch to below 10%, but our Improved
ED-NotVia can futher shorten protection path stretch
around 1% to 2% of protection path stretch without sac-
rificing any other performance. From the result, there
is no direct relation between topology’s size and protec-
tion path stretch reduced.

S. CONCLUSION AND FUTURE WORK

In this paper, we have presented the new practical

NotVia addressing, which can fulfill current NotVia mech-

anisms and help Improved ED-NotVia mechanism to

identify a failure type and reduce protection path stretch.

We also proposed Improved ED-NotVia, which is the
further improvement over NotVia mechanism. Improved
ED-NotVia is better than original one in three aspects:
first, overall protection coverage is slightly better than
ED-NotVia’s; second, with some time cost for rSPT
computation, unnecessary NotVia addresses can be elim-
inated up to 53%; third, in single-link failure case, we
can get benefit from new addressing method and further

reduce protection path stretch.

Improved ED-NotVia is an easy-to-implement and
the practical NotVia approach to enhance network sur-
vivability and QoS. However, Improved ED-NotVia needs
more time cost to reduce memory cost of NotVia ad-
dresses. If possible, we will optimize rSPT algorithm to
decrease computation cost. As the next step, we will
discuss and sum up with other technique, to find better
IPFRR solution.

6. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and
ED-NotVia’s authors for their valuable comments.

7. REFERENCES

[1] G. Enyedi, G. Rétvari, P. Szilagyi, and
A. Cséaszar. IP Fast ReRoute: Lightweight
Not-Via. In Proceedings of the 8th International
IFIP-TC 6 Networking Conference,
NETWORKING 09, pages 157168, Berlin,
Heidelberg, 2009. Springer-Verlag.

[2] G. Iannaccone, C. nee Chuah, S. Bhattacharyya,
and C. Diot. Feasibility of IP restoration in a
tier-1 backbone. IEEE Network, 18:13-19, 2004.

[3] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian.
Delayed Internet routing convergence.
IEEE/ACM Trans. Netw., 9(3):293-306, 2001.

[4] A. Li, P. Francois, and X. Yang. On Improving
the Efficiency and Manageability of NotVia. In
Proceedings of the 2007 ACM CoNEXT
conference, CONEXT 07, pages 26:1-26:12, New
York, NY, USA, 2007. ACM.

[5] Q. Li, M. Xu, Q. Li, D. Wang, and Y. Cui. IP
Fast Reroute: NotVia with Early Decapsulation.
In GLOBECOM’10, pages 1-6, 2010.

[6] A. Markopoulou, G. Tannaccone,

S. Bhattacharyya, C.-N. Chuah, Y. Ganjali, and
C. Diot. Characterization of failures in an
operational IP backbone network. IEFE/ACM
Trans. Netw., 16:749-762, August 2008.

[7] P. Narvdez, K.-Y. Siu, and H.-Y. Tzeng. New
dynamic SPT algorithm based on a
ball-and-string model. IEEE/ACM Trans. Netw.,
9:706-718, December 2001.

[8] G. Rétvari, J. Tapolcai, G. Enyedi, and
A. Csaszar. IP Fast ReRoute: Loop Free
Alternates Revisited. In Proc. IEEE INFOCOM,
Shanghai, P.R. China, 4 2011.

[9] M. Shand, S. Bryant, and S. Previdi. IP Fast
Reroute Using Not-via Addresses. IETF Draft,
March 2010.

[10] A. Zinin and A. Atlas. Basic Specification for IP

Fast Reroute: Loop-Free Alternates. IETF Draft,
September 2008.

