Computer Communications 37 (2014) 64-76

Contents lists available at ScienceDirect

COI’I’IplltCI'
communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Source address filtering for large scale networks ™

@ CrossMark

Mingwei Xu®", Shu Yang *”*, Dan Wang¢, Fuliang Li *®, Jianping Wu *"

2 Department of Computer Science and Technology, Tsinghua University, Beijing, China
b Tsinghua National Laboratory for Information Science and Technology, Beijing, China
©Department of Computing, The Hong Kong Polytechnic University, Hung Hom, KL, Hong Kong

ARTICLE INFO ABSTRACT

Article history:

Received 26 May 2013

Received in revised form 21 September 2013
Accepted 28 September 2013

Available online 9 October 2013

Source address filtering is very important for protecting networks from malicious traffic. Most networks
use hardware-based solutions such as TCAM-based filtering, however, they suffer from limited capacity,
high power consumption and high monetary cost. Although software, such as SRAM, is larger, cheaper
and consumes less power, the software-based solutions need multiple accesses in memory, which as a
result bear much more additional lookup burden.

In this paper, we propose a new software-based mechanism. In our mechanism, routers cooperate with
each other, and each only checks a few bits rather than all bits in source addresses. Our mechanism can
guarantee the correctness, i.e., filtering all malicious traffic. We formulate it as an optimization problem
where the loads across the network can be optimally balanced. We solve the problem by dynamic pro-
gramming.

With the increasing number of filters, storage could also become a bottleneck for source address filter-
ing. Our mechanism improves this by distributing filters among different routers. We re-formulate the
problem by adding an additional storage constraint. Then we prove that the problem is NP-Complete,
and propose a heuristic algorithm to solve it.

At last, using comprehensive simulations with various topologies, we show that the mechanism greatly
improves both lookup burden and storage space. We conduct a case study on China Education and
Research Network 2 (CERNET2), the largest pure-IPv6 network in the world. Using CERNET2 configura-
tions, we show that our algorithm checks less than 40 bits on each router, compared with 128 bits in

Keywords:

Source address filtering
Distributed filtering
Network security

IPv6 addresses.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Despite a significant breadth of research, malicious traffic prob-
lems such as DDoS attack and scanning, remain an important prob-
lem today [1]. Packet filtering is a prevalent mechanism for
preventing malicious traffic. Due to the importance of source ad-
dresses, source address filtering is widely adopted in current ISPs.
Traditionally, ingress routers will maintain a blacklist, which is the
set of source addresses that should be filtered. During the past
years, the blacklist has increased explosively, largely enabled by
botnets and other platforms for launching attacks. This situations
are even worse in large scale networks. In 2003, more than
20,000 sources appeared in an attack against an online betting site

* The research is supported by the National Basic Research Program of China (973
Program) under Grant 2009CB320502, the National Natural Science Foundation of
China (61073166), the National High-Tech Research and Development Program of
China (863 Program) under Grants 2011AA01A101.

* Corresponding author. Address: Room 9-402, East Main Building, Tsinghua
University, 100084 Beijing, China. Tel.: +86 (0) 10 62785822; fax: +86 (0) 10
6260364.

E-mail address: yangshu@csnet1.cs.tsinghua.edu.cn (S. Yang).

0140-3664/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comcom.2013.09.013

[2]. In 2007, a storm botnet was reported to include 50 million
sources [3]. In 2008, more than 800,000 unique malicious IP
sources addresses were reported everyday [4]. Under the devastat-
ing security crisis, the blacklists in ISPs are continually expanding
to defend against malicious traffic from possible attackers.

To implement the IP blacklist, TCAM is currently the de facto
industry standard. TCAM can achieve wire speed as it enables par-
allel matching [5]. However, TCAM stoarge space is limited due to
its high cost and power consumption. The line-card in Cisco 12000,
which is a typical core router, can only accommodate 20000 en-
tries. With more and more malicious traffic, TCAM-based solutions
can not accommodate so many entries, and can not defend against
today’s most severe attacks, not to mention larger attacks in the
near future, where millions of sources are expected [6]. Limited
storage even makes some TCAM-based solutions allow part of
the malicious traffic for better aggregation [7]. Even worse, the
growth of TCAM size can not keep pace with the explosively
increasing number of filters in the foreseeable future.

Although software-based solutions can provide larger space and
accommodate more filters, they are not widely used currently be-
cause they need multiple accesses during a single lookup. For

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2013.09.013&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2013.09.013
mailto:yangshu@csnet1.cs.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.comcom.2013.09.013
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

M. Xu et al./ Computer Communications 37 (2014) 64-76 65

example, current high performance routers usually use SRAM, and
the largest SRAM chip has 144 Mb (288 Mb SRAM are on the road-
map of major vendors) [8], thus a large fraction of software-based
solutions are using lookup tries [9]. Thus, software-based solutions
may introduce large latencies and serious congestions, especially
when facing burst traffic, despite their fast speed.!

Traditionally, the filters are stored in border routers, which is
the choke point that transit traffic is sure to pass by. As a result,
the border routers have to bear the additional processing burden.
In this paper, we try to balance the load by designing a distributed
mechanism where more routers can share the lookup burden. All
routers along a path can work cooperatively to handle the
source-IP filtering correctly. Such a design scales better facing in-
creased filtering requirements, especially in large scale networks.

Although many distributed solutions already existed [12,6],
they distribute tasks to routers by filters, that is, different routers
checks different address blocks. Unlike previous solutions, our
mechanism assigns different bits to routers. Such that each router
only checks a few bits rather than all in source addresses. In this
way, the load is balanced across the network, each router bears less
additional lookup burden, and achieve fast lookup speeds more
easily. The mechanism guarantees correctness, i.e., filtering all
malicious traffic, by letting all routers along a path cooperatively
check all bits in source addresses.

1.1. Simple example

To illustrate our basic idea, we use an example in Fig. 1. In the
network, packets will travel through ingress router a towards
egress router d, and there are three source prefixes to be filtered:
1x*, 00x and 010. Conventionally, filters will be stored only at
the ingress router a. Thus router a needs to access memory up to
3 times when a packet arrives, which brings heavy burden on rou-
ter a. In our mechanism, each router only checks 1 bit, i.e., a checks
the Ou,b checks the 14, and ¢ checks the 2,4 bit. When a packet
with source 010 arrives at router q, it will be delivered towards
the egress router along the path {a,b,d}. With the new mechanism,
router a checks the Oy bit first, and moves the pointer from the
root trie node to the 1, level; then it passes the packet along with
the intermediate pointer to router b, which checks the 1 bit,
moves the pointer to the 2,4 level and passes the information to
c;c will check the 2,4 bit, concludes that the packet falls in the
blacklist and should be filtered. In this way, each router bears less
burden, and the load is balanced across the network. The amor-
tized burden on each router would be much lower.

In this paper, we generalize the example by formulating it as an
optimization problem where we need to balance the load across
the network, given that (1) the total bit set to be checked, which
can be computed using the blacklist; (2) the network topology
information, including the location of ingress and egress routers;
(3) the spare capacity on each router for source address filtering,
in other words, each router has a limitation on the extra burden.
To solve the problem, we develop a dynamic programming based
algorithm, which can find the optimal solution.

Although SRAM provides larger storage space than TCAM, it
could still be subject to bottlenecks considering the rapidly
increasing number of malicious sources. To mitigate this problem,
we propose that storage (like the uni-bit trie in Fig. 1) can be di-
vided among multiple routers, such that each router only stores
one part of the total storage to be looked up. We introduce a
new problem by adding an additional storage constraint, and then
prove the problem to be NP-Complete and propose a heuristic
algorithm to solve it.

! The maximum clock rate of SRAM is 400 MHz, while TCAM is 266 MHz, the price
of SRAM is 10-100 times lower than TCAM [10,11].

Fig. 1. Router a is the ingress and d,ef are egress routers. The source address has
3 bits, and there exist 3 source filters: 1**,00", 010. The source filters are organized
as a uni-bit trie.

To evaluate our mechanism, we conduct various simulations
using both real and BRITE generated topologies. We show that
our mechanism can balance the load across routers much better,
and greatly reduce the number of bits that should be checked on
each router. With storage constraint, our mechanism provides
new room for storing large number of malicious sources. Using
the real configurations from China Education and Research Net-
work 2 (CERNET2, which is the world’s largest IPv6 network,
including 59 Giga-PoPs), we also conduct a case study. We show
that, throught using our mechanism, each router in CERNET2 only
needs to check at most 40 bits rather than whole 128 bits in IPv6
addresses. Using real data-traces, we also evaluate the overheads
brought by our mechanism in both data and control planes. The re-
sults show that the overheads caused by our mechanism are quite
low, this further prove that our mechanism is feasible in real
networks.

The paper is organized as follows: We present the related work
in Section 2. Section 3 is devoted to design overview of the new
mechanism. We formulate the problem and present the optimal
algorithm in Section 4. In Section 5, we take the storage constraint
into consideration. Section 6 shows our implementation design.
We evaluate our mechanism in Section 7, conduct a case study in
Section 8, and conclude our paper in Section 9.

2. Related work

A significant body of research works have been devoted to bat-
tle against DDoS and spoof problems with filters. For example,
most current networks use ingress access lists [13] or static ACLs
(Access Control Lists) [14] to keep malicious traffic our of the net-
works. TCAM, which is a scarce resource, is the de facto standard
for storing blacklist. However, with the exponentially increasing
of blacklist, TCAM-based filtering fails to accommodate so many
filters due to its limited storage space, high cost and high power
consumption [15].

Due to lack of hardware memory space, many solutions
have been proposed to reduce the number of filters. Pack
et al. [16] reduces the number of source prefixes through
aggregation. Yi et al. [17] utilizes bloom filters, which occupies
much smaller storage space, to defend against malicious traffic.
Some solutions [7,16] even allow part of the malicious traffic
for better aggregation of source prefixes, which are likely to
cause collateral damage. In [18], the bayesian decision theory
based on attacking history is used to optimize the set of filters
in blacklists.

In [6], a distributed filtering mechanism is studied to reduce
collateral damage. To save the scarce TCAM resources, it resolves
the problem as a resource allocation problem. With this mecha-
nism, routers only stores part of all filters, and different routers de-
fend against different IP address blocks along a path. However, the

66 M. Xu et al./ Computer Communications 37 (2014) 64-76

scheme is based on ACLs that reside in TCAM, but in most cases
only border routers have ACLs (e.g., smart edge network). Besides,
the distribution results are computed based on the blacklists, once
any filter changes, e.g., adding or deleting an IP prefixes, the routers
have to re-compute and this increases additional control over-
heads. Compared with [4], our scheme only re-computes when
the total bit set” that should be checked or topology changes.

In a previous paper [19], we have already presented the mech-
anism that optimally distributes bits to routers. In this paper, we
will further present an improved mechanism that can also save
storage space, because storage space in software-based solutions,
especially in high performance SRAM, is also limited in current
routers. Besides, we illustrate the implementation design and val-
idate our results with more comprehensive evaluations.

In Table 1, we compare all possible schemes (distributed by
bits& hardware scheme does not exist). We can see that our
scheme is the only one that performs well with all metrics.

In this paper, we suppose that a network is defending itself
without cooperation of other networks. There are many previous
works that assume collaboration between different ASes or net-
works, such as “push-back” [20] and BGP black-holing [21]. Our
work is orthogonal with them.

3. Design overview
3.1. Assumptions

To restrict the scope of our study, we first make a few assump-
tions: (1) We assume the existence of a blacklist, which can be con-
structed based on either historical data [3] or attacking
information from other hosts [22]. Constructing the blacklist is
orthogonal to our paper; (2) We assume that we can insert addi-
tional information between IP and MAC headers like MPLS, or in
other positions so as to carry necessary information between adja-
cent routers; (3) We assume that the routers are less likely to be
attacked and intra-domain communications are secure, despite
our efforts to take fail-safe measures into account; (4) We admit
that using our scheme, we do not completely prevent malicious
traffic at the border routers. Some ISPs do tolerate the existence
of malicious traffic inside their networks [12], but others may want
to keep it away to prevent DDoS or other attacks [23]. We will take
these factors into consideration and study them in more detail in
our future work. We only focus on router cooperation in this paper,
as this is the first step towards software-based distributed filtering.

3.2. Distributed software-based filtering

3.2.1. Trie creation process

A blacklist, i.e., a set of filters, exists on each ingress router. Traf-
fic that enters into the network should be discarded, if it hits any of
the filters on the ingress router. The blacklists can be obtained
through existing methods. Different ingress routers may have dif-
ferent blacklists, because they may be connected to attackers from
different sources.

We can use a trie to represent a blacklist. Here we use the sim-
plest uni-bit trie, where each trie node is assigned with a unique
index. In this paper, we call the trie B-trie (Blacklist-trie). Contin-
uing the example in Fig. 1, given the blacklist on router a, we show
the B-trie after assigning indexes to trie nodes. (see Fig. 2)

2 When there are may filters, the total bit set changes much less frequently.
Besides, we can set the total bit set to be all bits in source addresses, such that routers
only re-compute when topology changes.

Table 1
Comparison between different filtering schemes.
Schemes Metrics
Lookup Storage Overheads”
speed space
Distributed by filters & Fast Large® High
Hardware
Distributed by filters & Slow Large High
Software
Distributed by bits & Software Fast Large Low
Centralized & Hardware Fast Low
Centralized & Software Slow Large

2 The storage space is larger if routers along the path have ACLs, however, only
border routers have ACLs practically.
b Control overheads caused by distributed schemes.

3.2.2. Packet processing

Unlike ingress-based centralized filtering, where the ingress
routers check all bits, the routers in our mechanism only check a
portion of the total bits. Formally,

Definition 1. Given a blacklist, the set of bits that a router has to
check are called delegated bits of the router for the blacklist.

For example, in Fig. 1, the delegated bits for router a,b and c is
{0 },{1s} and 2,4 bits respectively.

Each router will maintain such an indexed B-trie together with
the delegated bits. When a packet enters into the network, the in-
gress router will insert an additional header that has two fields: (1)
an ingress router (IR) field that denotes the ingress router the pack-
et goes through; and (2) a node index (NI) field that denotes the
trie node where the lookup process should start. Initially, the NI
field is set to be the index of the root node. When the packet leaves
the network, the egress router will remove the additional header.

When a packet arrives at a router, the processing flow is shown
in Fig. 3. The router should first judge whether the additional head-
er exists or not. If it does not exist, the router just delivers the pack-
et to the next hop. Otherwise, the router extracts the IR and NI field
from the additional header. According to the IR field, the router can
identify the blacklist (or B-trie) associated with the ingress router.
According to the NI field, the router can locate a trie node in the B-
trie. Starting from the trie node, the router looks up the delegated
bits of the source address. If the lookup process stops at an inter-
mediate trie node, the router will override the NI field with the in-
dex of the intermediate trie node, and deliver the packet to the
next hop. If the source address matches a filter, the packet will
be discarded. Otherwise, the router will remove the additional
header and deliver the packet to the next hop, because the packet
does not match any filter.

For example, in Fig. 4, we show the lookup process on router c in
Fig. 1. Router c¢ will receive a packet with an additional header,
where the IR field denotes that the packet comes from ingress rou-
ter a, and the NI field denotes that the routers should start looking
up from trie node with index 5. Because the delegated bits of rou-
ter c is {2,4}, the router extracts the 2,4 bit from the source address,
and gets its value 0. Thus we traverse to the left child with index 6.
Because trie node 6 is related with the filter 010, so the packet
matches a filter, and the packet will be discarded.

4. Optimal covering scheme

To optimally share the load among different routers across a
network, we formulate the problem and present the algorithm in
this section. We put more details in [19].

M. Xu et al./ Computer Communications 37 (2014) 64-76 67

Fig. 2. B-trie after assigning indexes to trie nodes.

4.1. Problem formulation

G = (V,E) is a network, where V represents the set of routers, and
E represents the set of links. Let R be the set of ingress routers,
where traffic enter into the network. Let £ denote a path, which
is a sequence (ordered set) of routers. Let P" (r € R) be all possible
paths that a packet may travel from r to egress routers. Let
T" = {bo,by,...,}, (re R,0< b; <31 for IPv4, and 0 < b; < 127
for IPv6) be the ordered set of bits (i.e., b; < b;, if i <j) that should
be checked for traffic that enter into the network from r € R. Each
router only checks part of the bits (called delegated bits) in source
addresses, let B, C 7" de_)note the delegated bits that v should check
for traffic from r, and B" = (B,,,8,,,...),v; € V be a vector that
represents a covering scheme. Along any path from the ingress rou-
ter r to any egress routers, all routers check 7" cooperatively from
higher” to lower bits. The capacity of each router is constrainted due
to limited CPU resources. We define this constraint as the maximum
number of additional bits in source addresses that a router can look-
up. Let C, be the capacity of router ». To evaluate the processing load,
let f(v) be the function of utilization on router vforr, i.e., f(v) = ‘C—”

Due to security considerations, some ISPs do not want malicious
traffic penetrates deeply into their networks. To model this, we de-
fine maximum depth, which is the maximum hops that malicious
traffic could travel into the networks. Let d(u,v) denote the hops
(or distance) between router u and v,k be the maximum depth,
e.g., ingress filtering is a degenerate case where k = 0. ISP adminis-
trator can choose k to make a trade-off between security and load.
The notation list of this section is in Table 2. The problem is formu-
lated as following.

Problem 1. Given the set of bits to be checked 7" for an ingress
router r, find a covering scheme B", where (1) any bit in 7" will be
covered by a router along any path p € P"; (2) each router v checks
less bits than its capacity, i.e., |B},| < Cy; (3) the successor router
should check lower bits; (4) the router that is more than k hops
away from r should not check any bit, such that the maximum
utilization on all routers max,cy rzf"(?) is minimized.

The solution to the problem is called the optimal covering
scheme.

4.2. Finding the optimal covering scheme

In this section, we present the algorithm Opt-Cover() to find the
optimal covering scheme using dynamic programming.

We can obtain a spanning tree rooted at an ingress router and
towards all egress routers, and we call it covering tree, which has
to cover all bits to be checked, more specifically, all paths from root
to any leaf nodes should cover all bits.

Let O(v, n) be the Min-max utilization if covering tree rooted at
node v has to cover n bits, Oj(v,n) be the Min-max utilization if
covering tree rooted at node » has to cover n bits, and v itself has

3 Here, we define the most significant bit as the highest order bit.

to check j bits. Let A/(v,n) be the number of delegated bits on v
if Min-max utilization is achieved on the covering tree rooted at
v has to cover n bits. Let Parent(v) be the parent node of v on the
covering tree. Algorithm Opt-Cover() computes the delegated bits
of each node as follows.

2: Cons-Cover()

Input CH”
Output S VveV
Initialzation :S! = 0,Vv € V, cut < all leaf nodes

1 begin

2 PreOrder traverse the Covering tree and push nodes into Stack

3 while Stack # null do

4 v=Pop(Stack),t = |H"| — 1 //*

5 [h]# is the total number of trie nodes

6 fori=0,1,..., t do

7 if v is a leaf node then

8 i W(t—i.t) <|Sy| then Q(v,i)= L)l p(y i) =i

9 else Q(v,i)=+00, M(v,i) =i I[*

10 [h]v has to store 7 nodes

11 else

12 for j=0,1,....ido

13 ifW(t—i,t—i+j)<|S;|then

Qj(v,i) = WA’*’” else Q;(v,i) = +oo
I

14 [h]if v store j nodes, Min-max utilization is foreach child node u of
v do

15 L Qj(v,i) = max{Q;(v,7), Q(u,i — j)}

16 Q(v,i) = minj—q 1, Q;j(v,7)

17 | M(v,i) = j, where Q;(v,1) = Q(v. i)

18 if Q(r, |H"| — 1) < 100% then

19 PostOrder traverse the Covering tree and push node into Stack, pt = 0

20 while Stack # null do

21 v = Pop(Stack)

22 S) = {ap, Parent(xy)|pt < k < pt + M(v,pt)}, pt = pt + M(v, pt)

23 end

The input of Algorithm Opt-Cover() is the bit set that has to be
checked for traffic from an ingress router, and the output is the del-
egated bits on each router. In line 6, the node is a leaf node, thus it
has to check all i bits. In line 8 to line 14, the node is an intermedi-
ate node, thus it can share the load with its children. If it checks
j bits itself, then each of its children has to check i — j bits, and
the max utilization is computed through line 12, where current
max utilization is stored in O;(v,i). In line 12, we compute the opti-
mal covering scheme (for the covering tree rooted at v) by selecting
the scheme that results in minimum utilization.

Theorem 1. Algorithm 1 finds the optimal covering scheme. The
complexity of Algorithm 1 is O(|V| x (|T7[%)).

Proof. We prove the first part by induction method. To prove that
Algorithm 1 computes the optimal covering scheme, we only need
to prove that O(r,|7"]) is the Min-max utilization. If v is a leaf
node, then O(»,0) = 0. If v is an intermediate node and i < n, sup-
pose that Algorithm 1 computes O(u, k) correctly, where u belongs
to the children of v and k < i. Then according to line 12, if » checks
jbits, the optimal covering scheme would be max{O;(v,i),
O(u,i—j)}, because O(u,i—j) is already the Min-max utilization
on u. According to line 13, we compare all possibilities of dividing
the bits between v and its sub-tree, and find the minimum, which
is the optimal solution. Thus, O(v,i) is the Min-max utilization.
Through reduction, we prove that O(r,|7'|) is the Min-max
utilization.

We can see that Stack has less than |V| nodes initially. The
number of loops in line 5 and line 10 is less than [77|. The number
of loops in line 11 is bounded by a constant. Thus the theorem gets
proved. O

68 M. Xu et al./ Computer Communications 37 (2014) 64-76

A packet
arrives

Extract IR &

Locate a B-trie

—P node with IR & —P»|
NI

Lookup
delegated bits

Deliver to
next router

Yes

A\ 4

Discard the
packet

Match a filter?

Yes

Completed?

No

Override NI with
Intermediate node

No Remove .
L Deliver to
additional 1 next ho
header P

Fig. 3. Flow chart of packet processing on a router.

IR=a IR=a IR= O ars
5D NI=1 NI=2 NI=5
& S >Z e
—— o — W -
a b c d

Fig. 4. Lookup process on router c in Fig. 1.

The complexity of Opt-Cover() is quite low, and linearly in-
creases with V. Thus the algorithm brings only a few overheads
in control plane, and adapts to large scale network.

4.3. Theoretical analysis of total delay

With the optimal covering scheme, the load on each router can
be reduced. Although we focus on load balancing in this paper, dis-
tributed filtering also brings other benefits. One of them is reduc-
ing the transmission delay of a packet that traverses a network.

We only consider the delay caused by filtering. The ingress-
based filtering can be seen as a simple M/M/1 queue model.* Sup-
pose the traffic rate is N, packets per second, then the arrival rate on
the ingress router r is 4 = |7"| x N, which is the number of required
memory accesses per second. The service rate is 1t = C, x Np, which is
the maximum number of memory accesses per second that the rou-
ter can bear. According to the Little’s formula [24], the average delay
spent on filtering a packet is ﬁ = m

With distributed filtering, although more routers have to check
the packets, each router will check less bits. Let £ be a path that
packets will flow on. For each router » € Z, the service rate is still
Cy x Np, while the arriving rate becomes |5),| x N,. Thus, the total

delay is 3,7 (C,,—|BIZ/\)><NP'
We use an example to illustrate the benefits. Fig. 5 shows the
total delay caused by filtering when a packet traverses the network

4 Using M/D/1 model, we will get similar results.

Table 2
Notation list in Section 4.
Notation Definition
Vv the set of routers
R the set of ingress routers
L a path (including an ordered set of routers)
r an ingress router
P all paths that a packet may traverse from r to egress routers
7" the set of ordered bits that should be checked for packets from r
B, the set of bits that node » checks for packets from r
Br a covering scheme for the ingress router r
Cy capacity of router v
f(v utilization function on router v for ingress router r
O(v,n) Min-max utilization if the tree rooted at v covers n bits
Oj(v,n) Min-max utilization if the tree rooted at v covers n bits, and v

checks j bits

under a specific configuration. We set the parameters as follows,
|7"| = 32 (IPv4 address length), N, = 100,000 (according to the traf-
fic rate on a border router of CERNET2), || = 3 (less than the diam-
eter of a common AS [25]), and C, = C,, v € £ (assume all routers
have the same capacity across the network). In Fig. 5, we can see
that with ingress-based filtering, the total delay will bloat when
the capacity of ingress router decreases. With distributed
filtering, the total delay will increase much more slowly. Especially
when the router capacity is close to |77|, i.e., 32. For example, when
router capacity is 32.1, the total delay reaches 100 ms with ingress-
based filtering, but only 13 ms with distributed filtering. Note that
if router capacity is less than |7"|, ingress-based filtering will cause
packet loss (or miss), while distributed filtering still has enough
capacity to handle the packets. The above results indicate that,
with distributed filtering, we can use low/middle capacity routers
to defend against large scale attack, which can save much upgrad-
ing cost for ISP providers.

5. Optimal covering scheme with storage constraint

Although software-based mechanisms provides larger space,
there may exist too many filters to be stored on a single router.
For example, if a B-trie contains 3,000,000 filters, and each trie
node in B-trie occupies 64 bits®, then the total storage is almost

5 We use the simplest structure, where one trie node has two pointers, each
occupies 32 bits.

M. Xu et al./ Computer Communications 37 (2014) 64-76 69

10
—Ingress—-based
- - -Distributed filtering
W, 2
g 10
>
K
3 10’
[
S O
LT T P cu
32 35 40 45
Router Capacity (Bits)

Fig. 5. Total delay as a function of router capacity.

Fig. 6. Distributed source address filtering with storage constraint, where each
router can only store 3 trie nodes.

192M bits, which is beyond the capacity of current largest SRAM
chip available in the market [8].

Besides sharing load and sharing delay, sharing storage among
routers is also possible with distributed filtering. For example, in
Fig. 1, if each router can only store 3 trie nodes, then none router
can accommodate the trie with 6 nodes. However, we notice that
each router checks part of the total bits, such that each router only
has to check part of the B-trie. Thus, each router only has to store a
portion of all trie nodes. For example, in Fig. 6, we show that if router
astores trie nodes 1,2, 3, router b stores trie nodes 3,4, 5, and router ¢
stores trie nodes 5, 6. The filtering process is the same with Fig. 1.

With storage distributed, the lookup process is the same with
that in Fig. 3. But here we divide the B-trie by trie nodes, rather
than bits. Formally,

Definition 2. Given a blacklist (B-trie), the set of trie nodes that a
router has to store are called delegated trie nodes of the router for
the blacklist.

Different with delegated bits, there exists intersection among
the delegated trie nodes of different routers. For example, in
Fig. 6, although router a has already stored trie node 2, router b still
has to store trie node 2. This is because trie node 2 is the leaf trie
node on a, while it is also the root node on b.

Thus, given the additional storage constraint, our objective is to
find a covering scheme that minimizes the maximum utilization
among all routers, and satisfies the storage constraint at the same
time. Here the covering scheme indicates a scheme that distributes
the trie nodes to routers across the whole network.

5.1. Problem formulation
Let 7" be the B-trie (a set of trie nodes) constructed by all filters

in the blacklist on ingress router r. For a trie node x € H', we define
L'(x) as trie level of x in the B-trie.° Let 8" C'H" be the set of trie

6 Let the root node be in the highest level of the B-trie.

Table 3
Notation list in Section 5.
Notation Definition
H" the B-trie constructed by all filters in the blacklist
X a trie node in the B-trie
L'(x) the level of x in the B-trie
S, the set of trie nodes v has to store for the blacklist on r
Sy the maximum trie nodes v can store

nodes that node v has to store for the blacklist on r. For two trie
nodes x,y € H', define x C y as node x be the ancestor of y or y itself
on H'. Each node has limited storage space, we use S, to denote the
maximum trie nodes that v can store. The notation list of this section
is in Table 3.

The problem is different with the problem stated in Section 4.1:
(1) there is an additional constraint on the storage space of each
node; (2) all nodes along a path should cover all trie nodes rather
than all bits. Then we re-formulate the problem with storage con-
straint as follows,

The solution to the problem is called the optimal covering
scheme with storage constraint.

Problem 2. Given the B-trie /" for an ingress router r, find a

covering scheme with storage constraint ?’, where (1) any trie
node in H" will be covered by a router along any path p € P"; (2)
each router v checks less bits than its capacity, i.e.,
MaXyegr L' (X) — mineg L'(X) < Cp, Vv € V,r € R; (3) each router
stores less trie nodes than S, (4) the successor router should check
children of trie nodes checked by previous routers, such that the
maX,sr L (x)—minxgsr” L"(x)

routers C,

maximum utilization on all
minimized.

5.2. Finding the optimal covering scheme with storage constraint

Although there is only one additional constraint, the problem
with storage constraint is totally different with the problem with-
out storage constraint. This is because: (1) the search space be-
comes much larger when we divide the B-trie by trie nodes; (2)
the search space does not follow dynamic structures. For exam-
ple, in Fig. 7, we show some of the covering schemes that satisfy
the storage constraint continuing the example of Fig. 6. In this
section, we will first prove that the constrained problem is NP-
Complete, and then give an efficient heuristic algorithm to solve
the problem.

Theorem 2. Finding the optimal covering scheme with storage
constraint is NP-Complete.

Proof. It is easy to see that the decision problem of validating a
given covering scheme is solvable in polynomial time. Therefore,
finding the optimal covering scheme with storage constraint is in
NP class. To show this problem is NP-hard, we reduce the Bisection
of Tree problem to it; the former is known to be NP-Complete [26].

The Bisection of Tree problem is: given a trie T composed of n
trie nodes, find a partition of the trie into 2 connected sets of size at
most [n/2] each, such that the number of edges connecting trie
nodes in different sets, called the cut size, is minimized.

Suppose there are two routers connected as a network, and one
acts as the ingress router. The B-trie is T. Each router has limited
storage capacity. The ingress router can store [n/2] trie nodes at
most, while the other router can store at most [n/2] + k trie nodes.
For 0 < k < |T|, we try to find the optimal covering scheme with
storage constraint. Suppose k is the minimum value that produces
a feasible covering scheme, where T is divided into T; and T, and

70 M. Xu et al./ Computer Communications 37 (2014) 64-76

Scheme 1| Scheme 2| Scheme 3| Scheme4
D
Router a ©/®\® ©/G)\® @\® ©
©
(3) 3 5 (D
Router b @S 6 ® (5) o @\@)
| o
Router ¢ @ @ ® (5 G O

Fig. 7. Several covering schemes that satisfy the storage constraint given in Fig. 6.

the ingress router stores all trie nodes in T;, while the other router
stores all trie nodes in T,. Then the Bisection of T is T; and T, — Ty,
and the minimum cut size is |T2| — (|T] — |T1]). This is because the
downstream router must store all trie nodes on the edges that
connect T, and T,. O

Note that by using algorithm Opt-Cover(), we can also distrib-
ute the storage to different routers, such that each router only
stores the trie nodes that are related with the corresponding bits.
However, the partition is un-balanced. For example, if we replace
the B-trie in Fig. 6 with another B-trie in Fig. 8(a). Suppose that
each router can store 7 trie nodes. By using Opt-Cover(), we know
that router a,b and c each should check the 0,1, and 2,4 bit, the
partition of storage among routers a,b and c is shown in Fig. 8(b).
Thus, router a stores 3 trie nodes, b stores 6 trie nodes, and c stores
12 trie nodes. We can see that ¢ can not accommodate so many trie
nodes, due to the fact that storage is unevenly distributed.

We therefore develop an efficient heuristic Algorithm Cons-Cov-
er() to find the optimal covering scheme with storage constraint.
This is different from the solution in Section 4.2, where the cover-
ing tree has to cover all bits. With storage constraint, the covering
tree should cover all trie nodes of the B-trie.

Heuristically, we try to find a sub-optimal solution and achieve
polynomial complexity, by reducing the search space of the prob-
lem. We enumerate all trie nodes with the principle of top-
down-left-right, and name them xg,x1,X,. .. in sequence. We define
node v completely-covers (or C-cover) trie node x;, such that: (1) the
ancestors of v on the covering tree do not have to store x; (indicat-
ing v stores both x; and parent of x;); (2) if an upstream router C-
covers trie node x; and a downstream router C-covers trie node
x;, then i < j. With this stricter definition, we can solve the problem
using dynamic programming.

Intrinsically, if a covering tree has to cover a set of trie nodes
{Xk, X1, - Xkri1 J(O<kKk<H —1),0<i<H —k, and the root
node stores trie nodes {XiXk+1, - .. Xi+j—1}(j < i). Then each sub-tree
rooted at children of the root nodes has to store trie nodes {Xyj,-
XiesjXicjats - - - Xirio1,Parent(Xy;),Parent(Xsje1), . . . ,Parent(xy.i_1)}. For
example, if the covering tree composed of routers a,b,c,e has to cover
the B-trie in Fig. 8(a), and the root node a stores trie nodes
{1,2,3,4,5,6,7}, then the sub-tree composed of b,c,e should store trie
nodes {4,5,6,7,8,9,10,11,12,13,14,15}. Suppose that we know the opti-
mal covering scheme with storage constraint for each sub-tree, then
we can compute the optimal covering scheme with storage constraint
of the entire tree by trying different number of trie nodes that would
be stored at the root node.

In Algorithm 2, let Q(v, n) be the Min-max utilization if the cov-
ering tree rooted at node v has to C-cover n trie nodes, Q;(v,n) be
the Min-max utilization if covering tree rooted at node v has to C-
cover n trie nodes, and v itself has to C-cover j trie nodes. Let W(i,j)

be the number of trie nodes a tree node should store to C-cover trie
nodes {xy|i < k <j}, i.e., W(iyj) = |{xx,Parent(x,)|i < k < j}|. For exam-
ple, in Fig. 8(a), W(8,15)=12. Let M(v,n) be the number of trie
nodes that v C-covers if Min-max utilization is achieved if the cov-
ering tree rooted at v has to C-cover n bits. Algorithm Cons-Cover()
computes the delegated trie nodes for each node as follows.

1: Opt-Cover()

Input e

Output B, YweV

Initialzation : B, =0,Vv eV
1 begin
2 PreOrder traverse the Covering tree and push nodes into Stack
3 while Stack # null do
4 v = Pop(Stack)
5 fori=0,1,..., |77| do
6 if v is a leaf node then
7 O(v,i) = =, N(v,i) =1 II*
8 [h]v has to check all 7 bits
9 else
10 forj=0,1,..., i do
1 Oj(v,i) == II*
12 [h]If v itself checks j bits in i

I*

13 [h]Then the Max utilization is
14 foreach child node u of v do
15 L Oj(v,i) = max{O;(v,i),O(u,i — j)}
16 O(v,i) = minj—g1,...; O;(v,i)
17 N (v,i) = j, where O;(v,i) = O(v,1)
18 if O(r,|T|") < 100% then
19 PostOrder traverse the Covering tree and push node into Stack
20 while Stack # null do
21 v = Pop(Stack)
22 len(v) = len(Parent(v)) + N (v, |T| — len(Parent(v)))
23 By ={T"| |T"| =1 —len(v) <i < |T"| = 1 — len(Parent(v))}
24 end

The input of Algorithm Cons-Cover() is the B-trie for an ingress
router, and the output is the delegated trie nodes on each router.
Similar with Algorithm Opt-Cover(), Algorithm Cons-Cover() also
first traverses from leaf nodes to root node to compute the trie
node number that each router has to C-cover. After computing
the optimal covering scheme with storage constraint, we can
compute the delegated trie nodes that each router has to store.
In Fig. 9, we show the optimal covering scheme with storage con-
straint in Fig .8(a), where each router can store 7 trie nodes at
most.

Theorem 3. Algorithm 2 finds the optimal covering scheme. The
complexity of Algorithm 2 is O(|V| x (|H'|?)).

M. Xu et al./ Computer Communications 37 (2014) 64-76 71

Router a

(a) A B-trie that has 15 trie
nodes

o™ o a

(b) The optimal covering scheme computed by Opt-Cover()

Router b Router c

Fig. 8. An example for computing covering scheme with storage constraint using Opt-Cover().

Router a

(D

Router b Router ¢

(2)

(3)
R R

Fig. 9. Optimal covering scheme with storage constraint following the example in
Fig. 8(a).

Proof. Using induction method, the proof for the first part is sim-
ilar with the proof in Theorem 1. Stack has less than |V| nodes ini-
tially. The number of loops in line 5 and line 10 is less than [H'|.
Thus the theorem gets proved. O

6. Implementation design

We implement our mechanism in a centralized way, because (1)
computing the optimal covering scheme requires a holistic view of
the network which is more easily accomplished with a centralized
approach; (2) routers do not have to do many additional
computations.

6.1. Implementation overview

In Fig. 10, we show the overview of our implementation. We
setup a centralized controller that will collect the information of
network topology and filter set. The procedure of the implementa-
tion is as follows.

1. The controller obtains the network topology. This can be
accomplished through existed IGP (Interior Gateway Pro-
tocol) protocols; For example, we can use OSPF as a sim-
ple, straightforward method to distribute these
information, although OSPF does not scale well.

2. The ingress routers send the blacklist to the controller.
Initially, the ingress routers send all filters in the blacklist
to the controller. After that, the filters are updated
incrementally;

3. The controller computes the optimal covering scheme
(with or without storage constraint). It also generates
configurations for each router, for example, the delegated
bits (or trie nodes) that each router has to check (or
store);

4. The controller sends the configurations to each router.
Without storage constraint, both blacklist and delegated
bits should be sent to routers. With storage constraint,
only delegated trie nodes should be sent to routers;

5. After receiving and setting up the configurations, routers
process the packets as in Fig. 3.

Optimal

Covering Model

Setting
Parameter
Blacklist Covering
Trie Tree
Controller
Operation_al I I U A }
Network

Fig. 10. Implementation overview.

6.2. Encoding and storing trie nodes

After constructing the trie, routers should encode each node
with a node index. The encoding results should be consistent across
different routers, i.e., different routers follow the same encoding
rule. In our mechanism, we assign index 1,2,3,... one-by-one to
each trie node following the principle of top-down-left-right. After
encoding the trie, the router should store the nodes in memory,
such that routers can access the trie node in constant time using
the node index. Without storage constraint, routers just store all
trie nodes linearly and continuity according to their indexes. For
example, in Table 4(a), we show the storage structure that stores
the trie in Fig. 8(a) on all routers without storage constraint.

However, with storage constraint, the continuity of trie nodes
may be broken, for example, a router may store trie node set
{4,5,8,9,10,11}. Thus the node index may not be equal to the phys-
ical position of each trie node. However, we notice that on a router,
all entry trie nodes, i.e., the delegated trie nodes that are not chil-
dren of any delegated trie nodes on the router, satisfy the continu-
ity property. For example, in Fig .8(b), the entry trie nodes 4, 5 on
router b, and the entry trie nodes 6, 7 on router ¢ both satisfy con-
tinuity. This is because according to Algorithm Cons-Cover(), the
trie nodes stored on a router are in the form of {x;,X+1,Xx+2, - . . ,Par-
XipXir1, X2, - - - Parent(xy), Parent(Xy+1), Parent(Xy+2), ... } and all trie
nodes are encoded following the principle of top-down-left-right rule.

Thus, we can store these entry nodes linearly in storage. When a
packet arrives, the router extracts the node index and finds a trie
node in storage by subtracting an offset. For example, Table. 4(b)
shows that the storage structure on each router with storage con-
straint. On router b, node 4 and 5 are stored in physical positions 1
and 2. When a packet with node index 4 arrives, the router

72 M. Xu et al./ Computer Communications 37 (2014) 64-76

Table 4

Storage structure without and with storage constraint following the example in Fig. 8.
Position Node Left Child Right Child
(a) Without storage constraint
All routers
1 1 2 3
2 2 4 5
3 3 6 7
4 4 8 9
5 5 10 11
6 6 12 13
7 7 14 15
8 8 / /
9 9 / /
10 10 / /
11 11 / /
12 12 / /
13 13 / /
14 14 / /
15 15 / /
(b) With storage constraint
Router a (offset: 0)
1 1 2 3
2 2 4 5
3 3 6 7
4 4 8 9
5 5 10 11
6 6 12 13
7 7 14 15
Router b (offset: 3)
1 4 3 4
2 5 5 6
3 8 / /
4 9 / /
5 10 / /
6 11 / /
Router c (offset: 5)
1 6 3 4
2 7 5 6
3 12 / /
4 13 / /
5 14 / /
6 15 / /

subtracts the offset 3 from 4, thus we can get the physical position
of node index 4. For other trie nodes except the entry nodes, the
router also stores them linearly in storage. However, the routers
should rewrite the left and right child values. For example, the left
child of node 4 on router b is 3 rather than 8, because node 8 is cur-
rently in the physical position of 3. Centralized controller in Fig. 10
is responsible for these rewrite operations.

6.3. Discussions on some practical issues

e Inter-operability: To achieve better performance when
defending against attacks, we have to change the routers.
With the new mechanism, routers are no longer talking
IP, and they have to understand a special shim header,
compute the optimal covering scheme, and forward pack-
ets based on the new behaviors. This can be seen as a
trade-off between security and inter-operability. Besides,
many routers have already implemented shim headers,
such as MPLS shim header. If not occupied, they can be
used directly to carry the needed information.

e Setting up and router failures: During setting up and router
failures, the optimal covering scheme (with or without
constraint) may be not installed on some routers. During
this time, we can use ingress-based filtering for a short
time, and switch back to distributed filtering when all
routers are synchronized. This will increase the utilization
on ingress routers for a short period.

e Topology and filter changes: When topology changes, the
controller has to re-compute and distribute a new cover-
ing scheme, it may introduce congestion for a short period
of time. In practice, we believe this is tolerable for current
routers, because network paths are normally stable
(topology changes daily [27]). Filters, or blacklists, change
more frequently. Without storage constraint, we can set
the total bit set (which should be checked) to be all bits
of source address, to prevent oscillation when the filter
set changes. With storage constraint, we will study its
incremental updates in our future work.

7. Performance evaluation
7.1. Simulation setup

We evaluate the algorithms using both BRITE [28] generated
and real topologies. We will discuss a case study on CERNET2 in
the next section.

7.1.1. BRITE topology

The sizes of the generated topologies are from 100 to 500. We
set the network degree (average number of links per new router)
to be 2 to 10. The number of bits to be checked is set to be 32
(for IPv4). On each router, the capacity constraint is 4 to 64. The
number of border routers is 2 to 20 [29,30]. We randomly select
one router as ingress router among all border routers, and others
as egress ones. The maximum depth k is set to be infinity, i.e., mali-
cious traffic should be filtered inside the network. The important
default parameters are in Table 5. Other parameters are in [19].

7.1.2. Real topology

To evaluate the performance of our mechanisms in real topolo-
gies, We obtain the topology of CERNET, that is a medium-scale
IPv4 ISP with 110 routers and 238 links in it. We also obtain four
Rocketfuel topologies (AS 1221, AS 1239, AS 3257, AS 6461)
according to [31]. The details of real topologies are also in [19].

7.1.3. Real blacklist

To evaluate the optimal covering scheme with storage con-
straint, we use data from Dshield.org [4]| - a repository collecting
intrusion reports from over 1000 organizations, and construct a
B-trie using its blacklist. The blacklist contains 807,838 different
source IPv4 addresses, and the B-trie has 1,498,253 trie nodes
(after compression [32]). Every node has two pointers, each occu-
pies 32 bits. Thus, the total storage requirement surpasses 90 Mb.
Current largest SRAM chip in the market is 36 Mb [33], and most
routers have less than 36 Mb spare SRAM storage space.

For comparison, we set ingress-base filtering as a benchmark.
Our evaluation metric is the Min-max utilization (utilization for
short) across the network. The results are averaged by 100 inde-
pendent and random experiments. We make the source code
developed in this paper public in [34].

7.2. Simulation results
7.2.1. Optimal covering scheme without storage constraint

Fig. 11 shows the impact of the network size and compares our
mechanism Opt-Cover() with ingress-based filtering. The number

Table 5
Default parameter table of brite-generated topologies.

No. routers ~ No. border routers Placement

300 5

Links/New router k

Random 3 +00

M. Xu et al./ Computer Communications 37 (2014) 64-76 73

of routers changes from 100 to 500. In Fig. 11, we can see that the
Min-max utilization decreases with network sizes when using
Opt-Cover(). As an example, if the network has only 100 routers,
the Min-max utilization is 39.65%, when the network size increases
to 500 routers, the Min-max utilization is only 29.74%. Clearly,
when the network is larger, the paths from ingress to egress are
stretched, where more routers can cooperatively share the load.
Compared with the traditional ingress-based filtering, Opt-Cover()
has much lower utilization. Opt-Cover() stays below 40% while in-
gress-based filtering stays around 155% (here, we do not limit the
router capacity, i.e., utilization can exceed 100%). Actually, ingress-
based filtering is insensitive with network size. This is obvious be-
cause the ingress router filters all malicious traffic. In Fig. 11, we
also plot the error bar, which represents one standard deviation,
we can see that the error bar of Opt-Cover() is much narrower,
indicating that the performance of Opt-Cover() is much more sta-
ble, this is because that more routers can share the load and this
reduce the unpredictability. We can also see that the bottom of
the error bar of ingress filtering is still higher than the top of the
error bar of Opt-Cover(). This indicates that the performance of
Opt-Cover() outperforms ingress-based filtering with high
confidence.

Fig. 12 shows the impact of network degree, i.e., links/(new rou-
ter). We see that the Min-max utilization of Opt-Cover() increases
when network degree increases, this is because that the paths a
packet travels become shorter when degree increases. However,
because the average degree of Internet is less than 3 [31,35], we
believe that ISPs can obtain essential benefits using our
mechanism.

In Fig.13, we study the relation between the number of border
routers and Min-max utilization. We see that the Min-max utili-
zation of Opt-Cover() increases with more border routers. For
example, the utilization reaches almost 50% with 20 border rou-
ters. This is because more paths from ingress to egress routers
lead to more constraints. However, most networks have <10 bor-
der routers [29], so our conclusion remains the same as Fig. 12.
Besides, we can also see that the with of the error bar decreases
with the number of border routers, this is because in our exper-
iments, we repeatedly let each border router be the ingress rou-
ter. Thus more border routers cause more experiments, and
decrease the width of error bar.

Fig. 14 shows the performance of Opt-Cover() with different
topologies. The results further prove the results we get using BRITE
generated topologies. With kinds of topologies, the performance of
Opt-Cover() is much better than traditional ingress-based filtering.
And the performances of Opt-Cover() is related with the sizes and
degrees of different topologies. For example, AS 6461 is small (has
only 128 nodes) while the degree reaches almost 3.0, such that the
Min-max utilization in AS6461 is the highest (35.78%) using Opt-
Cover().

In Fig. 15, we show the trade-off between maximum depth and
Min-max utilization. We can see that the Min-max utilization

L ——Opt-Cover
250 ——Ingress-based|

N
o
o

-
(5]
o

-
o
o

Utilization(%)

a
o

3 . 1
+} T T T T T 1
0

100 150 200 250 300 350 400 450 500
Network Size

Fig. 11. Utilization as a function of network size.

250

N
(=
=

-
12
=

-
(=3
o

Utilization(%)

o
o

, = Ingress—basedJ

03 3 4 5 6 7 8 9

Links/(New Node)

Fig. 12. Utilization as a function of network degree.

w
=3
o

N

o

=
s

n
(=3
=

Utilization(%)

6 8 10 12 14 16 18 20
Number of Border Routers

N3

Fig. 13. Utilization as a function of number of border routers.

200 T T T T T T T T T

-

(3

(=]
H

-
o
(=]

[l Opt-Cover
[Jingress-based

Utilization(%)

24
=]
H

CERNET 1221 1239 3257 6461

Fig. 14. Utilization on real topologies.

decreases with the maximum depth, because larger depth can
make more routers share the load. For example, when the depth
is O(this degenerates into ingress-based filtering), the Min-max
utilization is 149%. If the depth increases to be 1, the Min-max uti-
lization decreases to be 67%. Thus, we can conclude that ISP net-
works can benefit a lot if they allow the malicious traffic into
their networks, even by only one hop.

250 j j j — Opt—Covel
200}
<
c
§ 150
=
©
N 100
S
=]
50 T T T T 7
I 11 1 11
% 2 4 6 8 10

Max Depth

Fig. 15. Trade-off between maximum depth and utilization.

74 M. Xu et al./ Computer Communications 37 (2014) 64-76

100
é 80|
2
E 60 ¥ Network size: 100
T 40 Network size: 300
S <Network size: 500
a 20 © Ingress-based

O O O O O O
Vo2 vV o Y 8 VY 100
Maximum storage per router (Mb)
(a) Probability of complete block as a
function of router storage with different
network sizes

150(|-% Network size: 100]
Network size: 300)
<} Network size: 500

100 Ingress—based

50 R,

Utilization(%)

o

20 40 60 80 100
Maximum storage per router (Mb)

(b) Utilization as a function of router storage
with different network sizes

Fig. 16. Comparison of Cons-Cover() and ingress-based filtering with different network sizes.

100
E\i 80|
2
% 60 “&Border Routers #: 5
© 40 Border Routers #: 10
'8 <} Border Routers #: 15
o 20 € Ingress-based

OO OO A

VN V. N
2 Y 20 Y e Y 2 Y 100
Maximum storage per router (Mb)

(a) Probability of complete block as a
function of router storage with different
number of border routers

150(-%Border Routers #: 5
Border Routers #: 10

<} Border Routers #: 15|

1oo||-e-lng ress—based

501 % ﬂ g 1

20 40 60 80 100
Maximum storage per router (Mb)

Utilization(%)

(=]

(b) Utilization as a function of router storage
with different number of border routers

Fig. 17. Comparison of Cons-Cover() and ingress-based filtering with different number of border routers.

7.2.2. Optimal covering scheme with storage constraint

In this sub-section, we take storage constraint into consider-
ation. We set the spare storage space of each router to be 10 to
100 Mb. Note that when routers do not have enough storage space,
the blacklist can not be completely blocked. We define complete
block as every filter (or source address) in the blacklist can be
blocked by some routers.

Fig. 16(b) shows the relationship between probability of com-
plete block and maximum spare storage per router, within dif-
ferent network sizes. We can see that with ingress-based
filtering, the probability is zero when the storage space is less
than 90 Mb, because complete block will never be possible un-
less the ingress router can accommodate the whole B-trie. With
Cons-Cover(), complete block is possible with less storage on
each router. For example, if each router has 50 Mb spare storage
space, the probability is 100%. Because at least two routers are

100
X 80
= ¥ CERNET
= 60 1221
) <+1239
S 40 3257
3 S 6461
o 9 € Ingress—based

26 ; V100
Maximum storage per router (Mb)

(a) Probability of complete block as a
function of router storage on real topologies

on the path that a packet flows on, we can divide the storage be-
tween them. When the storage per router is 20 Mb, the proba-
bility is about 35.0% with network size of 500, but only 3.3%
with network size of 100. This is because when the network is
larger, there will be more routers on the path to share the stor-
age space.

Fig. 16(b) shows the min-max utilization as a function of stor-
age space on routers with different network size. We can see that
the utilization of ingress-based filtering still keeps around 150%,
while the utilization of Cons-Cover() is much lower. When the rou-
ter storage is larger, e.g., more than 50 Mb, the utilization of Cons-
Cover() is similar with that of Opt-Cover(), because the storage
constraint is almost always satisfied. However, when routers have
less storage space, the utilization of Cons-Cover() will increase. For
example, when the storage space is 20 Mb, the utilization reaches
53.9% with network size of 100. This is because less storage limits

150(| CERNET

1221

<1239
3257

©6461
Ingress-based|

=
(=3
(=]

Utilization(%)
3

o

20 40 60 80 100
Maximum storage per router (Mb)

(b) Utilization as a function of router storage

on real topologies

Fig. 18. Comparison of Cons-Cover() and ingress-based filtering with real topologies.

M. Xu et al./ Computer Communications 37 (2014) 64-76 75

m—— 10Gbps
2.5Gbps

Beijing— [
Tianjin
Zhengzhou ——

Lanzhou —

Wuhan

@ Shenyang Chuangchun
l l

Hefei——

FOREIGN
INTERNET

Haerbin

!

Dalian

———Jinan

Chengdu Chongging

Guangzhou

*—Changsha

«——Shanghai

Najing

Xiamen Hangzhou

Fig. 19. CERNET2 topology.

the possible solution space. However, the utilization of Cons-Cov-
er() is always smaller than ingress-based filtering.

Fig. 17 compares Cons-Cover() with ingress-based filtering with
different number of border routers. We can see that Cons-Cover()
can achieve complete block with less router storage, while in-
gress-based filtering needs more than 90 Mb. When the number
of border routers decreases, the probability of complete block in-
creases, because more routers on the path can share the storage.
Besides, when the router storage space decreases, the utilization
of Cons-Cover() will increase. For example, with 15 border routers
and 30 Mb router storage space, the utilization of Cons-Cover()
reaches 68.1%. However, it is still smaller than the utilization of in-
gress-based filtering.

At last, Fig. 18 compares Cons-Cover() with ingress-based filter-
ing under real topologies. The results are similar with BRITE gener-
ated topologies. Under all topologies, Cons-Cover() can achieve
complete block with less storage, the utilization of Cons-Cover()
decreases with router storage, and is much smaller than ingress-
based filtering. The performances under different topologies show
slight differences. For example, for Cons-Cover() under AS 6461,
the probability of complete block is smaller, and the utilization is
higher than other topologies. This is because it has smaller network
size and higher degree than other topologies.

8. A case study

Finally, using the real configurations of CERNET2 (which is the
largest IPv6 network [36]), we conduct a case study. The topology
of CERNET?2 is in Fig. 19. CERNET2 has two international exchange
centers connected with the foreign Internet, in Beijing (CNGI-6IX)
and Shanghai (CNGI-SHIX). Currently, we want to filter malicious
traffic along a pre-defined path from CNGI-6IX to CNGI-SHIX, i.e.,
{Beijing (BJ), Tianjin (TJ), Jinan (JN), Hefei (HF), Nanjing (NJ), Shang-
hai (SH)}. The capacity of each router is limited, as shown in the top
bar of Fig. 20, estimated using the history data on each router.

We obtain the FIB (Forwarding Information Base) information of
CERNET2 and use it as a whitelist to block malicious traffic.” The
FIB of CERNET2 has 6973 IPv6 prefixes, which can be structured with
a trie of 13280 trie nodes. Suppose that each trie node consumes

7 IPv6 is in the initial stage as an IPv6 network, so it does not have a blacklist. Note
that Opt-Cover() and Cons-Cover() remains the same after using whitelist.

Number of Bits

BJ TJ JN HF NJ SH

Fig. 20. Capacity of each router, and number of additional bits that each router has
to check of source addresses.

(2
o

[—Ingress-based - SH ~BJ NJ --JN TJ =—HF|

N (23 £
o o o

CPU Utilization (%)
>

100 200 300 400 500 600
Time (seconds)

OO

Fig. 21. CPU utilization on different routers.

64 bits (each has two 32 bits pointers as usually implemented), thus
the whole trie consumes less than 1 Mb storage. Storage is not a
problem in this case, we only use Opt-Cover() to reduce the Min-
max utilization.

Traditional ingress-based filtering takes place in either Beijing
or Shanghai, and needs to check 128 bits in source addresses. The
additional processing burden exceeds the spared capacity. And
the maximum utilization among all routers reaches 160% when fil-
ters are only stored in Beijing.

Fig. 20 shows the results computed by Opt-Cover() in the bot-
tom bar. The routers only need to check at most 40 bits (in Shang-
hai) in source addresses. The maximum utilization is only 36.11%,
on the router of Tianjin.

To evaluate the overheads in data plane, we implement our
scheme in Click router [37]. We deploy the Click in virtual ma-
chines on desktops with AMD Athlon Il X2 245 2.91 G CPU and 2

76 M. Xu et al./ Computer Communications 37 (2014) 64-76

250 T T T T T
— Opt-Cover()

200
150

100

50

Number of Re-computations

08/03/2010 08/22/2010 09/11/2010 10/01/2010 10/20/2010 11/09/2010 11/29/2010
Time

Fig. 22. Number of re-computations.

GB DRAM. We set up 6 routers, each representing a router on the
path from Beijing to Shanghai. We assign virtual resources to each
router in proportion to their capacity (the maximum one is equal
to the capacity of the desktop). Besides, we collect 10 minutes traf-
fic on the router of BJ during Oct, 2011. The total traffic volume is
457 GB. We replay these packets, and let them flow from router B]
to router SH.

Fig. 21 shows the CPU utilization of each router, including the
router on BJ with ingress-filtering, and routers on BJ, TJ, JN, HF,
NJ, SH with distributed filtering. We can see that with ingress-
based filtering, the CPU utilization of the ingress router is much
higher than other routers. For example, the maximum utilization
of ingress-based filtering can reach 37.9%, while the maximum uti-
lization among all routers of distributed filtering is only 18.1%. We
can also see that the load is almost balanced among different rou-
ters when we use the distributed filtering scheme.

To evaluate the control plane overheads, we use the real data
traces of topology changes during four months in 2010. In
Fig. 22, we show the number of re-computations, which consumes
most CPU resources on the controller. The maximum number of re-
computation times can reach several hundreds/day. However, due
to the low complexity of Opt-Cover() (it costs less than 1ms for one
computation within CERNET2 topology, according to our experi-
ments), it will not be a problem even for current PCs.

Currently, the CPU utilization of CERNET2 routers is less than
20%. By setting up a high performance centralized controller, we
believe that the additional overheads in both data and control
planes of our scheme are bearable in CERNET2.

9. Conclusion and future work

In this paper, we proposed a new distributed filtering mecha-
nism, where routers inside networks can work cooperatively to fil-
ter the malicious traffic. This mechanism reduces the number of
accesses to memory, and balances the load across the networks.
We formulated the problem as finding a distributed scheme where
the load is optimally balanced, and all bits are checked inside the
networks. Our scheme can also reduce the memory storage on each
router by letting each router store only part of the blacklist. We
formulated the problem by adding an additional storage con-
straint. We proved that the new problem is NP-Complete, and pro-
posed a heuristic algorithm to solve it.

Through simulations, we showed that the performance could be
greatly improved through our mechanism under various topolo-
gies. Using case study in CERNET2, we proved that our scheme
should be feasible in the real world.

References

[1] A. Yaar, A. Perrig, D. Song, Siff: a stateless internet flow filter to mitigate ddos
flooding attacks, in: Proc. IEEE Symposium on Security and Privacy, Berkeley,
CA, 2004.

[2] K. Argyraki, D.R. Cheriton, Scalable network-layer defense against internet
bandwidth-flooding attacks, IEEE/ACM Trans. Netw. 17 (2009) 1284-1297.

[3] X. Liu, X. Yang, Y. Lu, To filter or to authorize: network-layer dos defense
against multimillion-node botnets, in: Proc. ACM SIGCOMM'08, Seattle, WA,
USA, 2008.

[4] Dshield dataset. <http://www.dshield.org>.

[5] V.C. Ravikumar, R. Mahapatra, Tcam architecture for ip lookup using prefix
properties, Micro, IEEE 24 (2) (2004) 60-69.

[6] F. Soldo, A. Markopoulou, K. Argyraki, Optimal filtering of source address
prefixes: models and algorithms, in: Pro. IEEE INFOCOM'09, Rio de Janeiro,
Brazil, 2009.

[7] E. Soldo, K. El Defrawy, A. Markopoulou, B. Krishnamurthy, J. van der Merwe,
Filtering sources of unwanted traffic, in: Information Theory and Applications
Workshop, 2008, San Diego, California, 2008.

[8] C.Hermsmeyer, H. Song, R. Schlenk, R. Gemelli, S. Bunse, Towards 100 g packet
processing: challenges and technologies, Bell Lab. Tech. J. 14 (2) (2009) 57-
79.

[9] G. Varghese, Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices, Morgan Kaufmann, Waltham, MA, 2005.

[10] W. Jiang, Q. Wang, V. Prasanna, Beyond tcams: an sram-based parallel multi-
pipeline architecture for terabit ip lookup, in: Proc. IEEE INFOCOM’08, Phoenix,
AZ, 2008.

[11] Network capabilities: The good, the bad, and the ugly.

[12] V. Sekar, R. Krishnaswamy, A. Gupta, M.K. Reiter, Network-wide deployment of
intrusion detection and prevention systems, in: Proc. ACM CoNext'10,
Philadelphia, Pennsylvania, 2010.

[13] F. Baker, F. Savola, Ingress Filtering for Multihomed Networks, RFC 3704, Best
Current Practice, Mar. 2004.

[14] R. Beverly, A. Berger, Y. Hyun, k. claffy, Understanding the efficacy of deployed
internet source address validation filtering, in: Proc. ACM IMC'09, Chicago,
Illinois, USA, 2009.

[15] A. Liu, C. Meiners, E. Torng, Tcam razor: a systematic approach towards
minimizing packet classifiers in tcams, IEEE/ACM Trans. Netw. 18 (2) (2010)
490-500.

[16] G. Pack,]. Yoon, E. Collins, C. Estan, On filtering of ddos attacks based on source
address prefixes, in: Proc. IEEE Securecomm’06, Baltimore, MD, 2006.

[17] E.Yi, S. Yu, W. Zhou,]. Hai, A. Bonti, Source-based filtering scheme against ddos
attacks, Int. J. Database Theory Appl. 1 (1) (2008) 2008-2011.

[18] M. Goldstein, C. Lampert, M. Reif, A. Stahl, T. Breuel, Bayes optimal ddos
mitigation by adaptive history-based ip filtering, in: Proc. IEEE ICN’08, Cancun,
Mexico, 2008.

[19] S.Yang, M. Xu, D. Wang, J. Wu, Source address filtering for large scale network:
a cooperative software mechanism design, in: Proc. IEEE ICCCN'12, Munich,
Germany, 2012.

[20] A. Keshariya, N. Foukia, DDoS Defense Mechanisms: A New Taxonomy,
Springer, Berlin Heidelberg, 2010.

[21] D. Turk, Configuring BGP to Block Denial-of-Service Attacks, RFC 3882,
Informational, Sep. 2004.

[22] F. Soldo, A. Le, A. Markopoulou, Predictive blacklisting as an implicit
recommendation system, in: Proc. IEEE INFOCOM'10, San Diego, CA,
2010.

[23] K. chan Lan, A. Hussain, D. Dutta, Effect of malicious traffic on the network, in:
Proc. Passive and Active Measurement Workshop (PAM), 2003.

[24] D. Gross, J. Shortle, J. Thompson, C. Harris, Fundamentals of Queueing Theory,
Wiley, 2011.

[25] T. Lappas, K. Pelechrinis, M. Faloutsos, S. Krishnamurthy, A simple conceptual
generator for the internet graph, in: Proc. [EEE LANMAN'10, Long Branch, New
Jersey, 2010.

[26] AE. Feldmann, L. Foschini, Balanced partitions of trees and applications, in:
STACS'12, 2012, pp. 100-111.

[27] A. Markopoulou, G. lannaccone, S. Bhattacharyya, C.-N. Chuah, Y. Ganjali, C.
Diot, Characterization of failures in an operational ip backbone network, IEEE/
ACM Trans. Netw. 16 (2008) 749-762.

[28] Brite: Boston university representative internet topology generator. <http://
www.cs.bu.edu/brite>.

[29] B. Huffaker, A. Dhamdhere, M. Fomenkov, K. Claffy, Toward topology dualism:
improving the accuracy of AS annotations for routers, in: Proc. PAM’10, Zurich,
Switzerland, 2010.

[30] P.Barford, A. Bestavros, J. Byers, M. Crovella, On the marginal utility of network
topology measurements, in: Proc. ACM IMW'01, San Francisco, California, USA,
2001.

[31] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, Measuring isp topologies
with rocketfuel, IEEE/ACM Trans. Netw. 12 (1) (2004) 2-16.

[32] R. Draves, C. King, S. Venkatachary, B. Zill, Constructing optimal ip routing
tables, in: Proc. [EEE Infocom’99, New York, NY, 1999.

[33] Router fib technology. <http://www.firstpr.com.au/ip/sramip-forwarding/
router-fib/>.

[34] Source code for source address filtering for large scale networks. <http://
routing.netlab.edu.cn/project/twod-ip/code.rar>.

[35] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the
internet topology, in: Proc. ACM SIGCOMM'99, Cambridge, Massachusetts,
United States, 1999.

[36] J. Wu, J.H. Wang,]J. Yang, Cngi-cernet2: an ipv6 deployment in china,
SIGCOMM Comput. Commun. Rev. 41 (2) (2011) 48-52.

[37] The click modular router project. <http://www.read.cs.ucla.edu/click/click>.

http://refhub.elsevier.com/S0140-3664(13)00218-1/h0005
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0005
http://www.dshield.org
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0010
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0010
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0015
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0015
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0015
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0015
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0020
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0020
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0020
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0025
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0025
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0025
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0030
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0030
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0035
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0035
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0035
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0040
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0040
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0040
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0045
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0045
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0045
http://www.cs.bu.edu/brite
http://www.cs.bu.edu/brite
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0050
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0050
http://www.firstpr.com.au/ip/sramip-forwarding/router-fib/
http://www.firstpr.com.au/ip/sramip-forwarding/router-fib/
http://routing.netlab.edu.cn/project/twod-ip/code.rar
http://routing.netlab.edu.cn/project/twod-ip/code.rar
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0055
http://refhub.elsevier.com/S0140-3664(13)00218-1/h0055
http://www.read.cs.ucla.edu/click/click

	Source address filtering for large scale networks
	1 Introduction
	1.1 Simple example

	2 Related work
	3 Design overview
	3.1 Assumptions
	3.2 Distributed software-based filtering
	3.2.1 Trie creation process
	3.2.2 Packet processing

	4 Optimal covering scheme
	4.1 Problem formulation
	4.2 Finding the optimal covering scheme
	4.3 Theoretical analysis of total delay

	5 Optimal covering scheme with storage constraint
	5.1 Problem formulation
	5.2 Finding the optimal covering scheme with storage constraint

	6 Implementation design
	6.1 Implementation overview
	6.2 Encoding and storing trie nodes
	6.3 Discussions on some practical issues

	7 Performance evaluation
	7.1 Simulation setup
	7.1.1 BRITE topology
	7.1.2 Real topology
	7.1.3 Real blacklist

	7.2 Simulation results
	7.2.1 Optimal covering scheme without storage constraint
	7.2.2 Optimal covering scheme with storage constraint

	8 A case study
	9 Conclusion and future work
	References

