
Computer Networks 59 (2014) 227–243
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Efficient Two Dimensional-IP routing: An incremental
deployment design
1389-1286/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.bjp.2013.11.004

⇑ Corresponding author. Tel.: +86 (0)10 62785822; fax: +86 (0)10
6260364.

E-mail address: yangshu@csnet1.cs.tsinghua.edu.cn (S. Yang).
Mingwei Xu a, Shu Yang a,⇑, Dan Wang b, Jianping Wu a

a Department of Computer Science and Technology, Tsinghua University, and Tsinghua National Laboratory for Information Science and Technology, Beijing, China
b Department of Computing, The Hong Kong Polytechnic University, Hong Kong

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 May 2013
Received in revised form 12 October 2013
Accepted 4 November 2013
Available online 9 November 2013

Keywords:
Incremental deployment
High dimensional routing
Routing deployment
High dimensional routing has attracted more attentions to satisfy the increasing demands
for more flexible services in the Internet. These routing schemes make routing decisions
not only based on the destination address, but also on the source address, flow label, etc.
With these schemes, networks can provide more than best-effort services.

There are several research issues towards high dimensional routing. Clearly routers face
additional CPU and memory burden in looking up and maintaining the additional informa-
tion. While some overheads are unavoidable, we need to minimize such burden incurred. A
more important problem is the deployment. It is widely known that making changes to the
network layer is notoriously difficult. The proposed scheme should have least impact on
the current Internet protocols and infrastructure. A node-by-node incremental deployment
scheme is highly preferred. Obviously, without full deployment, the resulting paths for
traffic diversion may deviate from the pre-defined ones. The incremental deployment
scheme should minimize such deviation.

In this paper, we illustrate the problem by using a real example from China Education
and Research Network 2 (CERNET2). Then we formulate it as finding a deployment
sequence where the traffic flows should follow the pre-defined paths given (1) the number
of nodes to be deployed and (2) the extra burden each router can spare. We transform our
problem to boolean clauses and develop efficient solutions following the Maximum Satis-
fiability (MAX-SAT) problem. We present several related algorithms for different practical
scenarios.

We evaluate our algorithms using comprehensive simulations with BRITE generated
topologies and real world topologies. We conduct a case study on CERNET2 configurations.
Compared to an ad hoc deployment and an arbitrary TwoD-IP forwarding, our algorithms
compute a deployment sequence that achieves close to optimal performance after deploy-
ing a few nodes. The CPU and memory requirement are small for packet forwarding.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Traditional networks make forwarding decisions inde-
pendently at each node based on the destination address.
The destination-based networks perform well for provid-
ing universal reachability services. However, with more
users and enormous applications, simple best-effort ser-
vices can not satisfy increasing user demands.

For example, multi-homing is prevalent and Provider-
Aggregatable (PA) address is recommended currently [1].
However, with destination-based routing, it is difficult to
implement exit-routing that delivers the packets to the
corresponding provider. Thus, communications may be
interrupted due to ingress filtering deployed at the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bjp.2013.11.004&domain=pdf
http://dx.doi.org/10.1016/j.bjp.2013.11.004
mailto:yangshu@csnet1.cs.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.bjp.2013.11.004
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

228 M. Xu et al. / Computer Networks 59 (2014) 227–243
upstream providers [2]. Other examples focus on security
and performance, such as role-based access control in a
multi-tenant data center, load balancing and policy
routing.

High dimensional routing makes routing decisions not
only based on the destination address, but also on the
source address, Differentiated Services Code Point (DSCP)
value and flow label. It adds more information into routing,
and solves the fundamental problem of destination-based
routing, i.e., lack of routing semantics.

Recent years have seen many high dimensional routing
schemes. For example, policy-based routing (PBR) [3] uses
access control list to implement policies set by network
operators; multi-topology routing (MTR) [4] sets up multi-
ple forwarding table to configure service differentiation.
Openflow [5] uses wide flow table to enable flexible soft-
ware-defined network. Class-based routing [6] proposes
an Interior Gateway Protocol (IGP) based high dimensional
routing protocol to facilitate exit-routing.

With an overall considerations on security, load balanc-
ing, policy routing, China Education and Research Network
2 (CERNET2), the world’s largest pure-IPv6 backbone net-
work (including 59 Giga-PoPs), is now deploying such a
routing scheme called Two Dimensional-IP (TwoD-IP)
routing1 [8]. More specifically, the forwarding decisions of
intermediate routers will be based not only on the destina-
tion address, but also the source address. Like other high
dimensional routing schemes, the driving force of TwoD-IP
is to let the networks have the ability to divert traffic flows
(identified by their source and destination IPs and we call
them the VIP flows) to pre-defined paths (we call them the
VIP paths). CERNET2 has two international exchange centers
connecting to the Internet, Beijing (CNGI-6IX) and Shanghai
(CNGI-SHIX). For example, we find in operation that CNGI-
6IX is very congested with an average throughput of
1.18 Gbps in February 2011; and CNGI-SHIX is much more
spared with a maximal throughput of 8.3 Mbps at the same
time.

During deploying, CERNET2 faces many common chal-
lenges of high dimensional routing schemes. Here, we
use TwoD-IP as an example due to its simplicity and prac-
tical significance. Other high dimensional routing schemes
can easily fit into this framework.

Clearly, each router faces additional processor burden
in looking up the source IP and memory burden in main-
taining additional source IP tables. A more important prob-
lem is the deployment of the TwoD-IP routing scheme,
which requires upgrade of the CERNET2. It is widely known
that making changes to the network layer is notoriously
difficult. The proposed scheme should have least impact
on the current Internet protocol stack and infrastructure.
A node-by-node incremental deployment scheme is highly
preferred.

Clearly, if only partial nodes are deployed, a VIP flow
may not strictly follow its VIP path. Especially at the begin-
ning of deployment, the ISPs only want to deploy a few
routers for economic considerations. If some unimportant
1 It is also called source/destination routing by Cisco [7].
routers are deployed, the per-flow incremental routing
can even become an impediment to a network designer.

For further incentives, the network designer needs to
carefully choose the first batch of deployed routers, i.e.,
minimize the deviation between the pre-defined paths
and real paths. In this paper, we define a deviation that is
practically meaningful. We formulate a problem where
we need to derive a deployment sequence and minimize
the deviation given (1) the number of nodes to be deployed
and (2) the spared processor capacity of each router that
can be used for the source IP management; in other words,
there is a constraint on the extra burden for each router.

We show that the problem is NP-complete by reducing
it to a dense-k subgraph problem. We then transform our
problem to boolean clauses and develop algorithms follow-
ing the principle of the branch-and-bound algorithm for
Maximum Satisfiability (MAX-SAT). We study several clo-
sely related problems for different practical scenarios. We
develop efficient algorithms for these problems in a step
by step manner. We first develop an algorithm to compute
incremental deployment sequence without taking the rou-
ter capacity into consideration. We then develop algo-
rithms for the general capacity constrained problem. All
these algorithms can be easily extended to other high
dimensional routing schemes, e.g., with DSCP values and
flow labels into consideration.

We conduct comprehensive simulations using BRITE
generated topologies. We also evaluate our algorithms
using the topology and 51,642 prefixes of China Education
and Research Network (CERNET), a medium scale IPv4 net-
work with 110 routers and 238 links. The results show that
our algorithm can achieve close to optimal performance by
deploying a few carefully selected nodes. Each router only
needs to look up and maintain a small number of bits of the
source IP addresses.

We carry out a case study with CERNET2 configuration
and our primary concerned VIP traffic flows. We suggest
the deployment sequence of TwoD-IP routing. By deploy-
ing 5 routers, we can successfully divert our concerned
VIP traffic flows from the congested CNGI-6IX to CNGI-
SHIX. Only 22 bits out of 128 bits in the source IP (CERNET2
is an IPv6 network) need to be looked up and maintained.
We study the current burden of the CERNET2 routers, and
show that this is a moderate overhead.

The rest of the paper proceeds as follows. We start by
introducing the background and problem formulation in
Section 2. Section 3 is devoted to the problem without
capacity constraint. In Section 4, we take capacity
constraint into account. We systematically evaluate our
methods in Section 6. In Section 7, we study a real case
from CERNET2. At last, we summarize the related work
in Section 8, and conclude our paper in Section 9.
2. Background and the optimal incremental deployment
problem

2.1. Background on TwoD-IP routing

We first give the background of the TwoD-IP routing in
our context. Routers across the network will cooperate to

Fig. 1. Example of TwoD-IP routing.

M. Xu et al. / Computer Networks 59 (2014) 227–243 229
divert VIP traffic flows to pre-defined paths. The VIP traffic
flows (such as specified traffic for policy routing, large-
volumn traffic for load balancing, and sensitive traffic for
security) are either selected by network operators or com-
puted by in-network controllers.

In each router, there is a destination-IP forwarding ta-
ble. Additionally, there is a source-IP forwarding table for
each entry of a destination prefix.2 There are multiple ways
to implement this in a router. We show an example in Fig. 1
using linearly stored table, e.g., TCAM. Nevertheless, the ta-
ble can be also structured as two dimensional tries [9],
which builds a trie on the destination prefixes and hang each
source tries on the leaves of the destination trie. And each
trie can be either uni-bit trie or multi-bit trie, depending
on the stride of each access in memory.

When a packet arrives at a router, the router maps the
destination IP to a source-IP table. This is in contrast to
the conventional IP routing, where the mapping leads to
the next hop directly. Then the router reads the source IP
of the packet and using the source-IP table, the next hop
of this packet is obtained. Longest match first rule is used
for both destination and source IP tables.

In the example of Fig. 1, a packet with a destination pre-
fix of 00111 and source prefix of 11,000 will match 0011⁄

in the destination-IP forwarding table, which will lead to
a source-IP forwarding table. Then the source prefix
matches 1100⁄ in the source-IP forwarding table to get
the next hop a.

We emphasize that this is only an illustration of the
framework of TwoD-IP routing. The source IP table can
be stored and retrieved in other ways or even omitted.
For example, in Fig. 1, 0010⁄ directly maps to next hop b.
The updates of source-IP table can be manually configura-
ble for registered VIP flows. Our current CERNET2 require-
ment of diverting a few traffic flows will end up in this
way. In the future, when more source IP functionalities
are needed and VIP traffic flows are more dynamic, an
OSPF-like protocol can be developed. All these are impor-
tant engineering details or require further research but
they are out of the scope of this paper.

The overheads of TwoD-IP routing is the storage and the
process of the forwarding operations on the source IP.
These overheads can be abstracted as the number of bits
that needs to be checked for the source IP. For software
architecture routers, looking up less number of bits means
less searches in the data structure (e.g., tries) and less stor-
age space. For hardware architecture routers, since the
width of each entry of the TCAM is configurable nowadays
[10], less number of bits also means less storage space and
power consumption [11]. In this paper, we focus on lookup
performance because it is the key indicator in current over-
provisioned ISPs [12].

2.2. The optimal incremental deployment problem

Let G ¼ ðV ; EÞ be a network, where V is the set of nodes,
and E is the set of links. In this network we have multiple
2 Some high dimensional routing schemes [7] use one source-IP
forwarding table and multiple destination-IP forwarding tables, however,
they are symmetric with our structure.
VIP traffic flows. Let T denote the set of traffic flows, and
t 2 T be a VIP traffic flow. Let the source and destination
prefixes of t be PsðtÞ; PdðtÞ; t can be represented as
hPsðtÞ; PdðtÞi. In this paper, we often omit the destination
prefix, i.e., only use the source prefix to identify a flow if
there is no ambiguity. For each t, the user expects it to tra-
vel on a pre-defined VIP path (which usually is not the
shortest path). We use VIPðtÞ ¼ fv0

t ;v1
t ; . . . ; v j

t ; . . .g to de-
note the VIP path for t.

For a destination IP prefix Pd (we omit the traffic t if
there is no ambiguity), Pd ¼ ðpd

0pd
1 . . . pd

mÞ. Here pd
i 2 f0;1g

and 0 6 m 6 31 for IPv4 and 0 6 m 6 127 for IPv6. On a
node, we call it forwarding an operation IdðPdÞ to map Pd

to a set of next hops IdðPdÞ ¼ fa0; a1; . . . ; aj; . . .g, each of
which can lead the packets to the destination, loop free
(satisfying [13] to avoid routing loops). In conventional
routing, the result of a forwarding IdðPdÞ is a single next
hop on the shortest path.

For a source IP prefix, Ps ¼ ps
0ps

1 . . . ps
m

� �
. Here ps

i 2 f0;1g
and 0 6 m 6 31 for IPv4 and 0 6 m 6 127 for IPv6. We call
it Two Dimensional-IP (TwoD-IP) forwarding as an operation
I sðPsÞ to map Ps to a next hop at 2 fa0; a1; . . . ; aj; . . .g. TwoD-
IP routing is that for each packet, the routers perform a for-
warding operation and a TwoD-IP forwarding operation to
find a next hop on the pre-defined VIP path (note that for
packets of non-VIP traffic, a forwarding operation already
results in a next hop). Let the path of a packet forwarded
by TwoD-IP routing be LðPsÞ ¼ fv0;v1; . . . ;v j; . . .g; here
we only use the source prefix Ps to denote a packet for
simplicity.

If we deploy node v, this node is TwoD-IP forwarding
capable, i.e., this node can perform operation I sðPsÞ. A
deployment G is a set of nodes V 0# V that are deployed to
be TwoD-IP forwarding capable. If we do not deploy node
v ; v will use conventional shortest path routing. In a
deployment process, let j be the number of nodes we want
to deploy.

Due to the CPU and storage limitations, each router may
have a TwoD-IP forwarding capacity (or capacity in short).
As explained, we model this as the maximum number of
bits in Ps that the router can process. Let Cv denote
the capacity of router v. In other words, the router
may lookup a subset of bits of the prefix. Let
FðPsÞ ¼ ðpi0 pi1 . . .Þ; pij

2 fp0; p1; . . . ; pmg be a function that
selects a subset of bits from a prefix; we call FðPsÞ a sub-
prefix. For each sub-prefix FðPsÞ, we can also perform
TwoD-IP forwarding I sðFðPsÞÞ to map sub-prefix FðPsÞ to
a next hop asub 2 fa0; a1; . . . ; aj; . . .g. We show the notation
list in Table 1.

Table 1
Notation list.

Notation Definition Notation Definition

V Set of nodes Id Forwarding operation

t Traffic flows I s TwoD-IP forwarding
T Set of traffic flows G A deployment
VIPðtÞ VIP path for t LðG;F ; PsÞ TwoD-IP path
Ps Source IP prefix j Deployed number
Pd Destination IP prefix FðPsÞ A sub-prefix

230 M. Xu et al. / Computer Networks 59 (2014) 227–243
Since a router may conduct TwoD-IP forwarding based
on a sub-prefix FðPsÞ and a deployment G may include a
subset of nodes, the resulting path for a VIP traffic flow t
may deviate from its VIPðtÞ. Note that given G;F , for a
VIP traffic t (identified by its Ps), its path is determined.
Let LðG;F ; PsÞ denote such path. Clearly, we want such
deviation to be small. To quantify such deviation, In our
formulation, we used hamming distance to represent the
deviation between paths. While hamming distance is a
well-known indicator of the differences between vectors
and was widely used by previous works [14,15], it is prac-
tically meaningful in some scenarios. For example, when
the VIP path is to pass through a set of middle-boxes
[16], hamming distance can be used to measure the num-
ber of non-passed middle-boxes. In our case study in Sec-
tion 7, we show that hamming distance can be used to
represent the effect of load balancing. We admit that there
exists other meaningful metrics based on which we can
also formulate a similar problem. We focus on hamming
distance in this paper due to its simplicity. We will con-
sider other metrics and their comparison in our future
work. Note that we do not exclude other meaningful met-
rics and they should be discussed in our future work.

We define DðLi;LjÞ ¼ maxfjLij; jLjjg � jLi \ Ljj the dis-
tance between two paths Li and Lj. Since shortest path is
used if a node is not deployed, we always have
jLðG;F ; PsÞj 6 jVIPðtÞj. Thus,

Observation 1. DðVIPðtÞ;LðG;F ; PsÞÞ ¼ jVIPðtÞj � jVIPðtÞ \ L
ðG;F ; PsÞj.

Our objective is that given the number of routers that
we want to deploy, find a deployment that satisfies the
routers capacities, and minimizes the total distance of the
paths of the VIP flows and their pre-defined VIP paths.
Fig. 2. Network topology and VIP paths
Problem 1 (Constrained Deployment). Given j, find a
deployment Go where jGoj ¼ j so that 8v ; jFðPsÞj 6 Cv andP

tDðVIPðtÞ;LðGo;F ; PsÞÞ is minimized.
In practice, according to different volume of the VIP traf-

fic flows, we may need to assign different weights, i.e., wt for
flow t. In our problem formulation, we can add this weight
to the distance and modify

P
tDðVIPðtÞ;LðGo;F ; PsÞÞ toP

twtDðVIPðtÞ;LðGo;F ; PsÞÞ to show different importance of
t in the aggregated distance. In this paper, we will focus
our study on the unweighted problem. Our analysis and
solutions will not change in the weighted version. We will
briefly mention the weighted case in our case study.

Problem 1 has many variations; a simpler version is
that, if routers across the network have enough capacity,
we have
Problem 2 (Unconstrained Deployment). Given j, find a
deployment Go where jGoj ¼ j so that

P
tDðVIPðtÞ;LðGo; PsÞÞ

is minimized.

Note that we use LðGo; PsÞ to denote LðGo;F ; PsÞ without
capacity constraint.

As said, incremental deployment is highly favored in
practice. Let Gi ¼ Vi and Gj ¼ Vj be two deployments. We
call Gj incremental to Gi if Vi # Vj. An incremental deploy-
ment is a series of deployment G0;G1; . . . ;Gj; . . ., such that
Gj is incremental to Gi if i < j. Thus,

Problem 3. Given j0;j1; . . . ;jj; . . ., find an incremental
deployment, Go

0;Go
1; . . . ;Go

j ; . . ., such that jGo
i j ¼ ji, and Go

i is
a constrained (unconstrained) deployment. We call the
deployment series incremental constrained (uncon-
strained) deployment.

We illustrate our definitions with an example topology
in Fig. 2. Here we assume a is the source and e is the des-
tination. For a traffic flow the shortest path from a to e is
fa; c; eg. Assume there are one VIP flow t0 and one non-
VIP flow. Assume the pre-defined VIP path is
VIPðt0Þ ¼ fa; b; c; d; eg. As discussed, the VIP flow is identi-
fied by its source IP prefix and destination IP prefix.
Assume the source and destination prefixes of t0 are
Psðt0Þ ¼ ð00�Þ and Pdðt0Þ ¼ ð11�Þ; the source and destina-
tion prefixes of non-VIP flow is ð10�Þ and ð11�Þ. The for-
warding table on node c for conventional routing is
shown in Table 2.

Assume the TwoD-IP forwarding capacities of node
a; b; c; d be Ca ¼ 0;Cb ¼ 0;Cc ¼ 1;Cd ¼ 0. Assume node c
check the 0th bit; thus for node c;FðPsðt0ÞÞ ¼ ð0Þ. To
achieve TwoD-IP routing, node c should forward the pack-
ets of t0 to d, and the packets of non-VIP flow to e, that is,
I sðFðPsðt0ÞÞÞ ¼ d. We show the forwarding table on node c
for TwoD-IP routing in Table 2.

Assume we deploy one node, i.e., j ¼ 1 and we select c,
i.e., deployment G ¼ fcg. Then LðG;F ; PsÞ ¼ fa; c; d; eg, and
DðVIPðt0Þ;LðG;F ; PsÞÞ ¼ 5� 4 ¼ 1. The constrained deploy-
ment is Go ¼ fcg.

Table 2
Forwarding table for the routers c in Fig. 2.

Destination Idð�Þ

(a) Conventional
Pd ¼ ð11�Þ feg

Destination Idð�Þ Source Fð�Þ I sðFð�ÞÞ

(b) TwoD-IP
Pd ¼ ð11�Þ fd; eg Psðt0Þ (0) d

non-VIP (1) e

M. Xu et al. / Computer Networks 59 (2014) 227–243 231
3. Incremental unconstrained deployment

In this section, we focus on incremental unconstrained
deployment. In practice, the routers today is usually over-
provisioned [17], making it possible to support TwoD-IP
routing directly. Understanding of incremental uncon-
strained deployment also serves as a first step for the con-
strained version; which we will address in Section 4.

We will first develop an algorithm for unconstrained
deployment given the number of nodes to be deployed
(Problem 2). We show it can be naturally extended to solve
the incremental unconstrained deployment (Problem 3).

Theorem 1. Finding an unconstrained deployment (Problem
2) is NP-Complete.
Proof. It is easy to see that the decision problem of validat-
ing a given unconstrained deployment is solvable in poly-
nomial time. Therefore, finding an unconstrained
deployment is in NP class. To show this problem is NP-hard,
we reduce the dense-k subgraph problem to it; the former is
known to be NP-complete [18]. The dense-k subgraph prob-
lem is, given a graph ðV ; EÞ and a positive integer k, find a
subset Gk # V where jGkj ¼ k, so that the number of induced
edges is minimized, i.e., ððu;vÞ 2 EÞ \ ðGk � GkÞ. We expand
ðV ; EÞ to a network ðV 0; E0Þ, where V 0 ¼

S
ðu;vÞ2Efu; v ; p; qg,

E0 ¼
S
ðu;vÞ2Efðu;vÞ; ðu; pÞ; ðv ; pÞ; ðv ; qÞ; ðq; pÞg. And we add a

VIP traffic flow t ¼ fu;v ; p; qg for each ðu;vÞ 2 E. Fig. 3
shows the transformation. We next show that the uncon-
strained deployment Go where jGoj ¼ j ¼ k in ðV 0; E0Þ, is
equal to the solutionGk to dense-k problem. If u;v 2 Go, then
LðGo; PsÞ ¼ fu;v ; p; qg; if u 2 Go;v R Go, then LðGo; PsÞ ¼
fu;v; qg; else LðGo; PsÞ ¼ fu; p; qg (shortest path from u to
q). Thus only if u;v 2 Go;DðVIPðtÞ;LðGo; PsÞÞ ¼ 0, else
DðVIPðtÞ;LðGo; PsÞÞ ¼ 4� 3 ¼ 1. Thus,

P
tDðVIPðtÞ;

LðGo; PsÞÞ ¼ jEj � jððu;vÞ 2 EÞ \ ðGo � GoÞj. So it is equal to
maximize jððu;vÞ 2 EÞ \ ðGo � GoÞj. So, Gk ¼ Go. h

Though the unconstrained deployment problem is NP-
complete, if j, the number of nodes to be deployed, is a
constant, the problem is polynomial-time solvable even we
perform exhaustive search. However, if j is large, a straight-
forward exhaustive search is computationally unacceptable.
Therefore, whenj is large, we develop a heuristic where we di-
vide j into small j0 and find the deployment for each individ-
ual j0. This also naturally leads to an algorithm for the
incremental unconstrained deployment problem.

We first define passing-through property of each node.
Intuitively, v has passing-through property if v is on both
the path of the VIP traffic flow and its pre-defined VIP path.
Definition 1. Node v has passing-through property for
traffic t under deployment G, if v 2 VIPðtÞ \ LðG; PsðtÞÞ.

Clearly, the more nodes have passing-through property,
the smaller the total distance. Let Cðv ; PsðtÞÞ denote the
passing-through property of v for traffic t. We develop
Algorithm Passing-Through() to evaluate Cðv; PsðtÞÞ of all
nodes. Intuitively, evaluation of passing-through proper-
ties of all nodes needs to check all possible deployments
G, which is exponential. We develop an Algorithm Pass-
ing-Through() which does not need to perform an exhaust
search in the solution space. We will use Algorithm Pass-
ing-Through() as a subroutine to solve the unconstrained
deployment problem.

Let hv be an indicator variable for node v, if v gets de-
ployed, hv ¼ 1, else hv ¼ 0. Our idea is that we do not need
to make an assignment to h at the beginning (which will
reflect to a specific deployment). We use this abstract h
and transfer the problem to a generalized MAX-SAT prob-
lem. Our solution thus does not need to specify the
deployment.

We first use an example in Fig. 2 to explain our idea. For
example, node c has (or does not have) passing-through
property if and only if fðha ^ hbÞ _ :hag is equal to one (or
zero). We see that node c has passing-through property in
two conditions: (1) a is not deployed or (2) both a and b
are deployed. In condition (1), since a is not deployed, the
traffic will follow conventional shortest path routing. In
condition (2), since a is deployed, a will perform TwoD-IP
forwarding and the traffic will flow the VIP path to node
b. Since b is also deployed and will perform TwoD-IP for-
warding, the traffic will be forwarded to c. Correspondingly,
fðha ^ hbÞ _ :hag is equal to 1 if (1) ha ¼ 0 or (2) ha ¼ 1 and
hb ¼ 1. We thus provide a mapping between clause satisfac-
tion and our problem. Similarly, we can see that the
passing-through property of node a; b; d; e can be
transformed to clauses ‘1’, fhag; fðha ^ hb ^ hcÞ _ ð:ha ^ hcÞg,
fðha ^ hb ^ :hcÞ _ ð:ha ^ :hcÞ _ ðha ^ hb ^ hcÞ _ ð:ha ^ hcÞ_
ðha ^ :hbÞg respectively.

We define s childðv ; tÞ as the first successor node that is
on both VIPðtÞ and the shortest path. For example, in Fig. 2,
s childða; t0Þ ¼ c, indicating that c is the first successor node
on VIPðt0Þ ¼ fa; b; c; d; eg and also on the shortest path from
a to e. Algorithm Passing-Through() computes the passing-
through properties of each node as follows.

Algorithm 1. Passing-Through(VIPðtÞ)
The input of Algorithm Passing-Through() is a VIP path
VIPðtÞ, and the output is the passing-through properties
of each node on VIPðtÞ. Basically, Algorithm

Fig. 3. Transformation from a graph.

232 M. Xu et al. / Computer Networks 59 (2014) 227–243
Passing-Through() follows a dynamic programming struc-
ture. We show an example of Algorithm Passing-Through()
using Fig. 2 as the input. We show the last round execution
of Algorithm Passing-Through() to compute Cðe; Psðt0ÞÞ. As
shown in Fig. 2, s childðd; t0Þ ¼ e and d is the predecessor
node of e along VIPðt0Þ. And node b; c satisfy s childðb; t0Þ
¼ e, s childðc; t0Þ ¼ e. So Cðe; Psðt0ÞÞ ¼ Cðd; Psðt0ÞÞ _ ðCðb; P
sðt0ÞÞ ^ :hbÞ _ ðCðc; Psðt0ÞÞ ^ :hcÞ.

Theorem 2. The complexity of Algorithm Passing-Through()
is OðjVIPðtÞj2Þ, which is bounded by OðjV j2Þ.
Proof. The complexity of compute s childðv ; tÞ is bounded
by OðjVIPðtÞjÞ. Thus, the theorem gets proved. h

We now solve the unconstrained deployment problem.
Recall the generalized MAX-SAT problem as: given a set U
of variables hi, a collection of clauses, where each clause is
a disjunction of conjunction of literals (e.g., ðhi ^ hjÞ _ :hj),
find a truth assignment such that the number of satisfied
clauses is maximized. We develop our UOpt-Deploy() fol-
lowing the branch-and-bound algorithm for MAX-SAT
[19]. We improve the branch-and-bound algorithm by
exploring the search tree in a depth-first order. At each
node, the algorithm compares the number of clauses vio-
lated (unsatisfied with certainty) by the best assignment
(called upper bound ub), with the number of clauses vio-
lated by the current assignment plus an underestimation.
The underestimation is the number of clauses that become
violated if we extend the current partial assignment into a
complete assignment. If the current assignment plus the
underestimation is greater than the best assignment, the
subtree of the node is pruned, else the algorithm searches
one level deeper into the tree. If a clause is certain to be
satisfied, it will be removed from the union of clauses
(C). Initially, ub is computed by a local random search pro-
cedure call GSATðÞ [20]. When each step the algorithm
searches deeper, a variable in C is selected following J–W
rule [21], which gives precedence to variable in shorter
clauses.

The inputs of Algorithm UOpt-Deploy() are ub;C and j.
The outputs of the Algorithm UOpt-Deploy() are the
unconstrained deployment Go and the minimum distance.

Algorithm 2. UOpt-Deploy(ub;C;j)
Theorem 3. The complexity of Algorithm UOpt-Deploy() is

Oð jV jj � jT j �maxtjVIPðtÞj2Þ, bounded by OðjV jjþ2 � jT jÞ;

The network is loop-free after deploying G0.

Proof. The algorithm has to check at most jV j
j

� �
cases.

Each case has at most jT j �maxt jVIPðtÞj clauses, each
clause has at most maxt jVIPðtÞj variables. Because
jVIPðtÞj < jV j, so the complexity is bounded by OðjV jjþ2�
jT jÞ.

Without loss of generality, we prove that VIP flow t is
loop-free. As we mentioned, we follow the rules in [13]
when selecting the next hops. Suppose we use the ‘‘one
hop down’’ rule (other rules can be proved in a similar
way), i.e., the deployed routers only forward packets to
neighbors that are closer to the destination. Assume there
is a loop for t, there must be at least two nodes of VIPðtÞ on
the loop path.3 Let them be v i

t and v j
t , then v i

t is closer than
v j

t and v j
t is closer than v i

t , which contains
contradictions. h

This complexity is exponential. However, we can see
that if j is constant, the complexity becomes polynomial
and we can perform exhaustive search. But when j is large,
the computing time increases fast with j. To reduce com-
puting time, we develop a heuristic, which computes
UOpt-Deploy(ub;C;j) by running UOpt-Deploy(ub;C, 1)
for j times. The complexity is then reduced to
OðjV j3 � jT j � jÞ.

Note that this heuristic can naturally be used to solve
our incremental unconstrained deployment problem. We
call it Inc-UDeploy() for future reference.

Next, we reduce the search space of our problem given a
key observation as follows.

Observation 2. DðVIPðtÞ;LðG;F ; PsÞÞ ¼ 0 if and only if for
0 6 i 6 jVIPðtÞ � 2j; hv i

t
¼ 1 when s childðv i

tÞ–v iþ1
t .
Proof. The correctness proof is in Appendix A.1. h

Let K ¼ v i
t js childðv i

tÞ–v iþ1
t ; 8t; 0 6 i 6 jVIPðtÞ � 2j

� �
,

Observation 2 shows that we only need to deploy nodes
in K to guarantee that the paths that VIP flows are identical
with pre-defined VIP paths. We call the nodes in K key
nodes.
3 We do not consider the routing oscillation and instability [22].

Fig. 4. Feasible bit-lookup set.

M. Xu et al. / Computer Networks 59 (2014) 227–243 233
4. Increment constrained deployment

4.1. Feasible bit-lookup set

We now take the router capacity constraint into ac-
count. We first need to guarantee that all packets are for-
warded to the right next hops. Let BvðdÞ be a subset of
the bits of source IP address for router v and destination d.

Definition 2. A bit set BvðdÞ is feasible if packets of VIP
traffic t towards d will be forwarded to next hop at on VIPðtÞ,
and other packets will be forwarded on the shortest path.

We want Bv ðdÞ to be as small as possible. For example,
in TCAM-based solutions, less bits can reduce the width of
each TCAM entry, as the width of TCAM chips can be con-
figured in current routers [23]. Thus it can reduce the stor-
age space and power consumption of TCAM-based
solutions. In trie-based solutions, less bits directly lead to
less memory accesses and less memory space, thus making
the lookup speeds of routers faster.

We illustrate our definition with an example. In Fig. 4,
there are three VIP flows towards destination d; t0; t1, and
t2. On node v, the next hops of the VIP flows are
at0 ¼ a; at1 ¼ a; at2 ¼ c. There is a non-VIP flow, whose next
hop is b. The source prefixes of each VIP and non-VIP are
shown in Fig. 4. In this example, f1;2g; f0;1;2g;
f1;2;3g; f0;1;2;3g are all feasible bit-lookup sets. Take
f1;2g as an example. When a packet towards destination
d arrives, the 1st and 2nd bits will be checked in the source
IP: if the 1st bit is ‘1’, the packet will be forwarded to a; if
the 1st is ‘0’ and the 2nd is ‘1’, the packet will be forwarded
to c; else the packet will be forwarded to b.

Intuitively, for traffic ti; tj (or non-VIP) where the next
hops for ti; tj (or non-VIP) are different, the bits that need
to be checked for ti and tj (or non-VIP) should have at least
one bit in difference.4

4.2. Minimum bit-lookup set

We first develop an algorithm to search for the mini-
mum bit-lookup set for each router. This will become a
subroutine for the overall algorithm. We show that the
problem is NP-complete and we will solve it with a greedy
based algorithm from the minimum cover set [25].

Before deriving the complexity, we define Eðp; qÞ be the
set of the positions of the different bits for two prefixes p
and q. For example, for p ¼ h0011�i; q ¼ h00001i, the 2nd

and 3rd bits are different. Thus Eðp; qÞ ¼ f2;3g (Note that
the 4th bits of p; q are �;1, and Eðp; qÞ does not consider this
bit).

Let N be the set of non-VIP prefixes, and an be the next
hop for non-VIPs (next hop on the shortest path) for node v
and destination d.

Theorem 4. Finding minimum bit-lookup set is NP-complete.
4 Note that two prefixes can partially overlap, making it ambiguous to
find the bit difference. In such case, a preprocess can be conducted to
remove such overlapping [24]. Consequently, in the rest of the paper, we
assume that no two prefixes overlap.
Proof. We prove that finding the minimum bit-lookup set
is equivalent to the minimum hitting set problem. The
minimum hitting set problem is equivalent to minimum
cover set problem, which is known to be NP-complete
[26]. The minimum hitting set problem is, given a collec-
tion E of subsets of a finite set F, find a solution B # F, such
that B \ e–;;8e 2 E and jBj is minimized. Let F be the set of
all bits in source address. Let E includes
EðPsðtiÞ; PsðtjÞÞ; 8i; j, if ati

–atj
, and EðPsðtiÞ; pÞ; 8i; 8p 2 N ,

if ati
–an. It’s easy to see that the solution of minimum

bit-lookup set is equivalent to the solution of minimum
hitting set. h

We next present a greedy based algorithm to solve the
minimum bit-lookup set problem. At each stage, the algo-
rithm chooses the bit contained in most sets and then ex-
clude the sets that are already covered by the selected bit.

Algorithm 3. Min-BitLookup(v ; d)
Theorem 5. The complexity of Min-BitLookup() is OðjT j2Þ.
Proof. jN j is a constant, so jSj is bounded by OðjT j2Þ.
Because jBv ðdÞj 6 32 (or 128), thus theorem is proved. h

The algorithm achieves an approximation ratio of HðmÞ,
where m is the maximum number of sets that contain the
same bit, and HðnÞ is the nth harmonic number. The greedy
algorithm is proved to be the best-possible polynomial
time approximation for set cover problem [27].
4.3. Incremental constrained deployment

The constrained deployment problem can be trans-
formed into a partial generalized MAX-SAT problem [28],
which has some clauses marked as soft (relaxable) clauses
and the others as hard (non-relaxable) clauses. The objec-
tive is to find a value assignment that satisfies all hard

Table 3
Algorithm table.

Algorithm Problem definition Problem

UOpt-Deploy() Unconstrained
deployment

Problem 2

GOpt-Deploy() Constrained
deployment

Problem 1

Inc-UDeploy() Incremental
unconstrained deployment

Problem 3

Inc-GDeploy() Incremental constrained
deployment

Problem 3

Adp-Forward() Adaptive forwarding Problem 4

234 M. Xu et al. / Computer Networks 59 (2014) 227–243
clauses and maximum soft clauses. Transforming to our
situation, the soft clauses are the passing through proper-
ties on each node (i.e., Cðv ; PsðtÞÞ) and the hard clauses rep-
resent the solution space where the capacity constraint can
be satisfied. For example, ð:haÞ ^ ð:hbÞ means a and b
should not be deployed at the same time.

However, we cannot know the hard clauses in advance.
We learn the hard clauses during the computation process.
Iteratively, we use UOpt-Deploy() to compute a deploy-
ment G, and use Min-BitLookup() to validate if G satisfies
the capacity constraints on all nodes. If the capacity con-
straints are satisfied, we output the final solution. Else
we learn a hard clause as :v iðMin� BitLookupðv
i; dÞ � Cv i

> Min� BitLookupðv j; dÞ � Cv j
;8j–iÞ, which ex-

cludes the most congested node.

Algorithm 4. GOpt-Deploy(j)
Theorem 6. The complexity of Algorithm GOpt-Deploy() is
OððjV j � jÞ � ðjV j3 � jT j � jþ jV j � jT j3ÞÞ, which is bounded
by OðjV j2 � jT j � ðjV j2 � jþ jT j2ÞÞ.
Proof. The loop runs for at most jV j � j times. h

We can derive a heuristic for the incremental con-
strained deployment problem by natural extension of
GOpt-Deploy(), using the same method in Section 3. We
call it Inc-GDeploy() for future references. For clarity, we
summarize our algorithms developed in this paper in
Table 3.
5. Discussion and improvement

The deployment sequence derived from Algorithm Inc-
UDeploy() is fixed. In practice, the deployment may need
to be more flexible. Even the deployment sequence is set-
tled, the network or VIP paths may change. As such, we
need a more adaptive deployment scheme.
To address this problem, our idea is to make the de-
ployed nodes adaptive in the forwarding operation, i.e.,
I sðFðPsÞÞ. More specifically, a deployed node may ‘‘turn-
off’’ the TwoD-IP forwarding operation to a subset of VIP
flows. Let kðv ; tÞ denote this turn-off action, that is, if
kðv ; tÞ ¼ 1;v forwards t on VIPðtÞ, else v forwards t on the
shortest path.

Let J ðGÞ ¼ fkðv ; tÞjv 2 G;v 2 VIPðtÞg, we call J ðGÞ an
adaptive forwarding for G. Our objective is that given G, find
an adaptive forwarding that minimizes the total distance
between the paths of the VIP traffic flows and their pre-
defined VIP paths. Formally,

Problem 4 (Adaptive Forwarding). Given a deployment G,
find an adaptive forwarding J ðGÞ that minimizes the total
distance

P
tDðVIPðtÞ;LðG; PsÞÞ.

To solve this problem, we develop a dynamic program-
ming based algorithm Adp-Forward() which is optimal.

Algorithm 5. Adp-Forward(G)
Theorem 7. The complexity of Adp-Forward() is
OðmaxijVIPðtÞj2 � jT jÞ, which is bounded by OðjV j2 � jT jÞ.
Proof. For each VIP path, Adp-Forward() computes from
the last node to the first node along VIPðtÞ, and the com-
plexity for computing s childðÞ is bounded by
OðjVIPðtÞjÞ. h

With adaptive forwarding, the performance of incre-
mental deployment can be improved, i.e, reduce the total
distance between the paths of VIP traffic flows and the
pre-defined VIP paths, we can then derive a property of
the deployment sequence found by Adp-Forward().

Lemma 1. Given an incremental deployment series
G0;G1; . . ., then J 0ðG0Þ;J 1ðG1Þ; . . . computed by Adp-For-
ward() satisfies that, if i 6 j, the total distance within J iðGiÞ is
greater than or equal to total distance within J jðGjÞ.
Proof. Suppose there exist J 0j, such that if v R Gi and
v 2 Gj, let kðv ; tÞ ¼ 0; 8t 2 T , else let kðv ; tÞ be the same
with kðv ; tÞ in J i. Then the total distance within J 0jðGjÞ is
the same with the distance within J iðGiÞ. According to
the problem definition in Problem 4, distance within
J jðGjÞ is smaller than distance within J 0jðGjÞ. Thus we can
conclude that the distance within J jðGjÞ is always smaller
than or equal to the distance within J iðGiÞ, Thus the lemma
is proved. h

Table 5
Parameter table of real topologies.

No. routers No. edges Avg. links/new router

AS1239 315 972 3.09
AS1221 104 151 1.45

M. Xu et al. / Computer Networks 59 (2014) 227–243 235
Another improvement is to further reduce the mini-
mum bit-lookup set. One key is to differentiate VIP traffic
flows and non-VIP traffic flows. There are many options
to achieve this and one is to use a bit marked in the VIP
packets.
AS1755 87 161 1.85
AS3257 161 328 2.04
AS3967 79 147 1.86
AS6461 128 372 2.90
6. Performance evaluation

6.1. Simulation setup

We evaluate the performance of our TwoD-IP routing
scheme using both BRITE [29] generated topologies and
CERNET. A case study on CERNET2 is in the next section.

6.1.1. BRITE topology
We generate topologies with nodes from 50 to 400. To

set up a VIP flow, we first randomly select a pair of
source-destination nodes, and then randomly select its
VIP path which (1) is not the shortest path and (2) satisfies
the rules in [13] to prevent routing loops. Each VIP flow is
associated with multiple source and destination prefixes.
We set the number of source prefixes (SP) associated with
each VIP flow to be 50, and the number of destination pre-
fixes (DP) with each VIP flow to be 600. The number of VIP
flows is between 10 and 100. For each node, we set the
capacity constraint to be 0 to 32. For simplicity, we set
the capacity of each router to be the same over the net-
work, to show that our algorithm can reduce the number
of bits needed to be checked. However, the problem formu-
lation does not change if the capacity is a variable for each
router. The default values and other parameters of our
evaluation are in Table 4.

6.1.2. Real topology
We obtain the real topology of CERNET, which is a med-

ium-scale IPv4 network with 110 routers and 238 links.
We collected the prefixes from the RIB table of the router
in Beijing. There are 51,642 entries and 18 next AS hops.
We need to find the next router hop for each prefix at each
router. Similar to [30,31] we select 18 egress routers and
compute the next hop for each prefix using these egress
routers as the destinations by Dijkstra. We also obtain four
real topologies (AS 1239, AS 1221, AS 1755, AS 3257, AS
3967, AS 6461) from Rocketfuel [32]. The details of real
topologies are in Table 5.

We compare our algorithm with random deployment
(RD). We admit that random deployment is artificial, and
service providers may attempt other schemes. We thus
compare with human-like deployment (HD), that only
selects key nodes to deploy (see Observation 2). Note
Table 4
Parameter table.

VIP flows Capacity SP DP No. nodes

30 16 50 600 150
Links/new

node
Mode Model Placement a=b

3 Router
only

Waxman Random 0.15/0.2
however, HD is based on an observation within the contri-
bution of our study. Besides, we also set full deployment
(FD) as a benchmark for comparison. Our evaluation metric
is the averaged normalized distance (or in short a-distance
thereafter) between the paths computed by our algorithms
and the pre-defined VIP paths. Formally, a-distance equals

to
P

t
DðLðG;F ;PsÞ;VIPðtÞÞP

t
jVIPðtÞj

. The smaller the a-distance, the better. If

a-distance equals to zero, the performance is identical to
the FD, i.e., the computed paths are identical to the pre-
defined VIP paths. The results shown in this section are
averaged by ten random and independent experiments.
6.2. Simulation results

6.2.1. Incremental unconstrained deployment
Fig. 5(a) shows a typical incremental deployment pro-

cess and compares different deployment algorithms. There
are 150 nodes and 30 VIP flows. We deploy three nodes in
every incremental step. In Fig. 5(a), we see that even we do
not deploy any router, the a-distance is still around 50%.
This is because the shortest path can travel through a
few VIP nodes already. When we deploy more nodes, the
a-distance decreases. However, Algorithm Inc-UDeploy()
performs better than RD and HD. For example, after we de-
ploy 33 nodes, the nodes chosen by Algorithm Inc-UDe-
ploy() match the nodes on the VIP paths very well, and
the a-distance is only 2.02%. On the contrary, if we ran-
domly choose 36 nodes to deploy, the a-distance is
39.08%, if randomly choose 36 key nodes to deploy, the
a-distance is 17.82%. When we look into the details of
the simulation trace, we see that there are only 4 nodes
that do not match the VIP nodes using Algorithm Inc-UDe-
ploy(), while there are 68 VIP nodes not covered using RD,
31 VIP nodes not covered by HD. We emphasize again that
the essence of incremental deployment is to demonstrate
the benefits of TwoD-IP routing when deploying as few
nodes as possible. Clearly, our algorithm achieves this.

In Fig. 5(a), we see that for the paths computed by RD,
the a-distance to the VIP paths can even increase after more
nodes are deployed. For example, when 36 nodes are de-
ployed, the a-distance is 36.78%. After we deploy another
3 nodes, the a-distance increases to 37.36%. On the
contrary, we see in Fig. 5, this never happens to Inc-
UDeploy(). We also evaluate adaptive forwarding Adp-For-
ward() in Fig. 5(a). We see that its impact is quite small.
Both HD and Inc-UDeploy() will achieve optimal perfor-
mance after deploying all key nodes, however, the
a-distance of Inc-UDeploy() decreases much faster than HD.

0 10 20 30 40
10−3

10−2

10−1

100

101

102

103

C
om

pu
te

 T
im

e
(s

ec
on

d)

Number of Deployed Nodes

Step Size:1
Step Size:2
Step Size:5
Step Size:10

Fig. 6. Computation time of Inc-UDeploy().

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

a−
di

st
an

ce

Network Size

RD:10%
RD:20%
HD:10%
HD:20%

Inc−UDeploy:10%
Inc−UDeploy:20%

Fig. 7. a-distance as a function of network size.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a−
di

st
an

ce

Number of Deployed Nodes

RD
HD
Inc−UDeploy
Adp−Forward

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a−
di

st
an

ce

Number of Deployed Nodes

RD
HD

Step Size:1
Step Size:2
Step Size:5
Step Size:10

Fig. 5. a-distance as a function of number of deployed nodes. (a) Comparison of different deployment algorithms. (b) Impact of step size.

236 M. Xu et al. / Computer Networks 59 (2014) 227–243
Fig. 5(b) shows the impact of the incremental step size.
We compare the performance for four step sizes, 1, 2, 5, 10
(i.e., 1, 2, 5, 10 nodes are deployed in each incremental
step). We see that there is not much difference between
different step sizes. Therefore, our heuristic algorithm,
using small step size to reduce the computational com-
plexity, is satisfactory.

In Fig. 6, we study the computation time of each algo-
rithm. Because RD and HD both consume negligible com-
putation time, we only study Inc-UDeploy(). We can see
that the computation time increases with the number of
deployed nodes, because we have to run UOpt-Deploy()
for more times with more deployed nodes. The computa-
tion time increases exponentially with the step size, for
example, it only takes 1 second to compute 40 deployed
nodes when the step size is 1, while it takes more than 5
minutes when the step size is 10. This is because the com-
plexity of UOpt-Deploy() increases exponentially with the
number of deployed nodes in each step, according to
Theorem 3.

In Fig. 7, we study the impact of the network size. We
see that for Inc-UDeploy() and HD, the a-distance de-
creases when the network size increases. For RD, the a-dis-
tance increases when the network size increases. This is
because when the network is larger, the number of nodes
that belong to VIP paths increases slower than the total
number of nodes. Since Inc-UDeploy(), and HD always
choose from this set of nodes, the performance improves.
On the contrary, RD selects randomly from all nodes, mak-
ing its performance decrease. In Fig. 7, we also compare
different deploy algorithms within two different deploy-
ment ratios, 10%, 20% (i.e., 10%, and 20% of all nodes are de-
ployed). Clearly, the more nodes deployed, the shorter the
a-distance. And by deploying 10% more nodes within RD,
the improvement (i.e., the gap between 10% and 20%
deployment ratio) is smaller than Inc-UDeploy() and HD.
Although the a-distance both Inc-UDeploy() and HD de-
crease with network size, the a-distance of Inc-UDeploy()
drops more quickly to be zero, especially when deploy-
ment ratio is low. The result indicates that better perfor-
mance can be achieved by deployed carefully selected
nodes based on our algorithm, especially at the initial stage
of incremental deployment.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

a−
di

st
an

ce

Network Size

RD:0.2
RD:1
HD:0.2
HD:1

Inc−UDeploy:0.2
Inc−UDeploy:1

Fig. 8. a-distance as a function of number of VIP flows.

0.5
RD

1239 1221 1755 3257 3967 6461
0

0.1

0.2

0.3

0.4

0.5

a−
di

st
an

ce

RD
Inc−UDeploy
HD

1239 1221 1755 3257 3967 6461
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a−
di

st
an

ce

RD
Inc−UDeploy
HD

Fig. 9. a-distance in different topologies. (a) A-distance in different
topologies when deployment ration is 0.1. (b) A-distance in different
topologies when deployment ration is 0.2.

M. Xu et al. / Computer Networks 59 (2014) 227–243 237
In Fig. 8, we study the impact of the number of VIP traf-
fic flows. In practice, when the number of VIP traffic flows
increases, we will also deploy more nodes to be TwoD-IP
capable. Thus, we set an increasing ratio x between the
number of VIP flows and the nodes deployed, i.e., every x
additional nodes will be deployed when there is one addi-
tional VIP traffic flow. We compare different deploy algo-
rithms within two different ratios 1 and 0.2. We see that
the a-distance decreases when the number of VIP flows in-
creases for all algorithms. This shows that deploying more
nodes has higher positive impact. RD performs the worst,
even the increasing ratio of RD is 1, its performance is still
worse than Inc-UDeploy() with increasing ratio of 0.2.
When the ratio is high, the a-distance of HD is quite small.
However, when the ratio is low, the a-distance of HD is al-
most as worse as RD.

In Fig. 9, we show the performance of different algo-
rithms when the deployment ratio is 0.1 or 0.2. We can
see that Inc-UDeploy() performs much better than HD
and RD, especially in large scale networks, such as AS
1239. HD performs better than RD, because HD selects de-
ployed nodes in key nodes. In Fig. 9(b), when the number
of deployed nodes exceeds the number of key nodes, the
a-distance of Inc-UDeploy and HD both achieve 0. This fur-
ther validates our results.
0 50 100 150
0

0.1

0.2

0.3

0.4

a−
di

st
an

ce

Number of Deployed Nodes

HD

RD−Adp

HD−Adp

Fig. 10. A-distance as a function of number of deployed nodes.
6.2.2. Adaptive forwarding
Fig. 10 shows the impact of adaptive forwarding on ran-

dom deployment processes (RD and HD) that do not follow
the optimal incremental deployment. We deploy three
nodes in every incremental step. We see that adaptive for-
warding improves both RD and HD. For example, if we ran-
domly choose 90 nodes to deploy, the a-distance is 34.71%,
however, the a-distance decreases to be 27.65% if we use
adaptive forwarding; if we randomly choose 12 key nodes
to deploy, the a-distance is 28.49%, and the a-distance de-
creases to be 22.93% if adaptive forwarding is used. In the
extreme case, adaptive forwarding improves RD by 7.1%
maximally, and improves HD by 5.5% maximally. Adaptive
forwarding has greater impact on RD, because RD will also
choose non-key nodes, which can also act as relay nodes to
further decrease the a-distance.

In Fig. 11, we study the benefits of adaptive forwarding
when VIP flows change. After setting up 30 VIP flows and
choosing 30 nodes to deploy according to Inc-UDeploy(),
we generate 10–70 new VIP flows. We see that when the
number of new VIP flow increases, the a-distance also in-
creases. The more the new VIP flows, the larger the a-dis-
tance. However, with adaptive forwarding, the a-distance
increases slower, i.e., the gap between Inc-UDeploy() and
Adp-Forward() becomes larger when more VIP flows are

0.2

0.3

0.4

0.5

a−
di

st
an

ce

0 5 10 15 20 25 30
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

a−
di

st
an

ce

Number of changed nodes

Inc−UDeploy
Adp−Forward

Fig. 12. A-distance as a function of number of changed nodes.

0 10 20 30 40 50 60 70
0.1

0.15

0.2

0.25

0.3

0.35

0.4
a−

di
st

an
ce

Number of changed VIP flows

Inc−UDeploy
Adp−Forward

Fig. 11. A-distance as a function number of vip flows.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

a−
is

ta
nc

e

Number of Deployed Nodes

RD
Inc−GDeploy
HD

Fig. 13. A-distance as a function of number of deployed nodes.

238 M. Xu et al. / Computer Networks 59 (2014) 227–243
generated. This is because adaptive forwarding can man-
age the VIP flows that are away from their pre-defined
VIP paths.

In Fig. 12, we study the benefits of adaptive forwarding
when topology changes. After deploying 30 nodes accord-
ing to Inc-UDeploy(), we randomly add 5-30 new nodes5.
The a-distance will increase when more nodes are added.
This is because when topology changes, the forwarding ac-
tion (e.g., the next hop on the shortest path) of each node
may change. Thus the a-distance will increases because
the deployed nodes are computed according to the original
topology. With adaptive forwarding, the a-distance in-
creases slower. The result shows that we can achieve sub-
stantial benefits through adaptive forwarding when VIP
flows or network topology change.
0 5 10 15 20 25 30
0

0.1

Capacity of Each Node

Inc−GDeploy:10%
Inc−GDeploy:20%
6.2.3. Incremental constrained deployment

Fig. 13 shows an incremental deployment process with
capacity on each node be 16. We also deploy three nodes in
5 The influenced VIP flows will be regenerated
every incremental step. In Fig. 13, we see that the a-dis-
tance decreases when we deploy more nodes, and Inc-
GDeploy() always outperforms RD and HD. For example,
after deploying 18 nodes, the a-distance computed by
Inc-GDeploy() is 18.33%, while the a-distance computed
by HD is 35.0%. After deploying 27 nodes, the a-distance
computed by Inc-GDeploy() is only 10.0%, while the a-dis-
tance computed by RD is 39.40%. We see that the perfor-
mance is worse than Inc-UDeploy() in Fig. 5. This is not
surprising as we have more constraints in the routers. In
addition, different from Fig. 5, the a-distance of the con-
strained deployment will not decrease to 0 even all nodes
get deployed. This is because some bottleneck nodes can-
not forward along the pre-defined paths.

We then study the impact of the capacity of each node
in Fig. 14 within two deployment ratios, 10% and 20%. We
see that a-distance decreases when capacity increases. We
can also see that when the capacity is 15, the performance
is the same as unconstrained deployment. This also sug-
gests that in general TwoD-IP routing does not incur an
additional 32-bit processing overhead for the routers.
Fig. 14. A-distance as a function of capacity.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a−
di

st
an

ce

Number of Deployed Nodes

RD
HD
Inc−UDeploy
Adp−Forward

20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

a−
di

st
an

ce

Network Size

RD:0.1
RD:0.5
HD:0.1
HD:0.5

Inc−UDeploy:0.1
Inc−UDeploy:0.5

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

a−
di

st
an

ce

Number of Deployed Nodes

RD
Inc−GDeploy

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

D
is

ta
nc

e

Capacity of Each Node

Inc−GDeploy:5%
Inc−GDeploy:10%

Fig. 15. Simulation on CERNET. (a) A-distance as a function of number of deployed nodes on CERNET. (b) A-distance as a function of number of VIP flows on
CERNET. (c) A-distance as a function of number of deployed nodes on CERNET. (d) A-distance as a function of capacity on CERNET.

M. Xu et al. / Computer Networks 59 (2014) 227–243 239
6.2.4. Simulation results on CERNET
We further validate our results using CERNET.
Fig. 15(a) shows an incremental unconstrained deploy-

ment process by deploying two nodes at each step. We see
that the a-distance is 26.7% even we do not deploy any rou-
ter, this is because of the low connectivity of CERNET
topology. When we deploy more nodes, the a-distance de-
creases and Inc-UDeploy() performs much better than RD
and HD. After deploying 8 nodes, the a-distance of Inc-
UDeploy() is 1.78%, the a-distance of RD is still 22.49%,
and the a-distance of HD is 5.92%. Fig. 15(b) shows the im-
pact of the number of VIP flows. Here, we set the increasing
ratio to be 0.1 and 0.5, i.e., deploying 0.1 and 0.5 nodes
after adding a VIP flow. In Fig. 15(b), a-distance decreases
with the number of VIP flows. Inc-UDeploy() decreases fas-
ter and performs the best. HD achieves nearly optimal
result when the ratio is high, but much worse when the ra-
tio is low.

Fig. 15(c) shows an incremental constrained deploy-
ment process. When we deploy more nodes, a-distance de-
creases and Inc-GDeploy() outperforms both RD and HD. In
Fig. 15(d), we study the impact of node capacity on Inc-
GDeploy and RD within two different deployment ratios,
5% and 10%, we can see that a-distance decreases with
capacity. The simulation results is similar with the results
on BRITE generated topologies.
7. TwoD-IP Routing for CERNET2: a case study

We conduct a case study with the real topology and
prefix information of CERNET2. Our work also serves as a
reference for the future deployment of TwoD-IP routing
on CERNET2.

We want to move the out-going International traffic of
three universities, i.e., THU (in Beijing, with 38 prefixes),
HUST (in Wuhan, with 18 prefixes) and SCUT (in Guangz-
hou, with 28 prefixes) to CNGI-SHIX (Shanghai portal).
There will be three VIP paths, VIPðt0Þ ¼{Beijing, Tianjin,
Jinan, Hefei, Nanjing, Shanghai}, VIPðt1Þ ¼{Wuhan, Nanjing,
Shanghai} and VIPðt2Þ ¼{Guangzhou, Xiamen, Hangzhou,
Shanghai}.

In the CERNET2 scenario, we apply a variation of the
weighted version of our problems. Each VIP traffic flow t
is assigned a weight wt that is proportional to the traffic
volume. Besides, each node v 2 VIPðtÞ is also assigned a
weight wtðvÞ, which is set according to the importance of

240 M. Xu et al. / Computer Networks 59 (2014) 227–243
node v. wtðvÞ satisfies that
P

v2VIPðtÞwtðvÞ ¼ wt . Let the total
distance be

P
iðwt �

P
vwtðvÞ � IVIPðtÞ\LðFðPsÞÞðvÞÞ where

IAðwÞ is an indicator function (if w 2 A; IAðwÞ ¼ 1, else
IAðwÞ ¼ 0). The solutions above can be easily modified to
solve the variant version .

In our case, the traffic volume from THU is 1955 (Mbps),
the traffic volume from HUST is 510 (Mbps), and the traffic
volume from SCUT is 1107 (Mbps). Thus we set the weights
to wt0 ¼ 19:6;wt1 ¼ 5:1;wt2 ¼ 11:0. Because our purpose is
to let the traffic flows travel through Shanghai to CNGI-
SHIX (let vs represent the router in Shanghai), thus let
wt0 ðv sÞ ¼ 19:6; wt1 ðvsÞ ¼ 5:1; wt2 ðv sÞ ¼ 11:0, and
wtðvÞ ¼ 0; 8t; 8v–vs.

Fig. 16(a) shows the incremental unconstrained deploy-
ment process, where we deploy nodes one by one. We
compare Inc-UDeploy() and HD algorithm (here nodes
are randomly selected from the VIP paths, the candidate
node set includes Beijing, Tianjin, Jinan, Hefei, Nanjing,
Shanghai, Wuhan, Guangzhou, Xiamen, Hangzhou). For
Inc-UDeploy(), the deployment sequence we suggest is
Guangzhou, Wuhan, Jinan, Tianjin and Beijing. We see that
after deploying the router of Guangzhou (occupies 30.8% of
the total traffic), the a-distance falls from 100% to 69.2%.
For HD to achieve similar performance, we need to deploy
routers at five cities. (See Fig. 17).

Fig. 16(b) shows the size of minimum bit-lookup set on
each router. Note that CERNET2 is IPv6; thus the IP ad-
dresses for lookup are 128 bits. Out of 128 bits, each router
has to check at most 22 bits in the source addresses. The
normal TCAM width is 36, 72, 144 bits, and CERNET2 is
using 144 bits TCAM now. Thus, the width can be reduced
to be 36 bits using the minimum bit-lookup set. If CER-
NET2 switches to using multi-bit trie (with strides of 4
bits), then the number of accesses in memory per lookup
can be reduced from d128

4 e ¼ 32 to d22
4 e ¼ 6. This proves that

ISPs can benefit from our algorithms no matter trie-based
or TCAM-based storage structures are used.

In Table 6, we show the current maximum utilization of 5
key routers in CERNET2. The most loaded one (Guangzhou),
0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of Deployed Nodes

a−
di

st
an

ce

Guangzhou

Wuhan Jinan
Tianjin

Beijing

HD
Inc−UDeploy

Fig. 16. Simulation on CERNET2. (a) A-distance as a function of number of deplo
CERNET2.
even at its peak state, has more than 35% redundant process-
ing capacity. As we also plan to add more linecards for a rou-
ter if it is chosen to be deployed, we consider it might be
reasonable to assume that the routers are capable to handle
the overheads for TwoD-IP routing.

8. Related work

Recent years see more research on improving routing
with richer semantics. Such as policy based routing [3],
customer-specific routing [33], user-directed routing [34],
class-based routing [6], and source/destination routing
[7]. They all add more information into the routing system,
to satisfy various demands from users.

Due to security and accounting problems, CERNET2 has
deployed SAVI (Source Address Validation Improvement)
[35] to validate the source address of each packet at the
edge points of the network. Currently, confirmed SAVI
users are more than 900,000 [36]. CERNET2 then decides
to integrate the source address lookup into IP routing
and deploy TwoD-IP.

Higher dimensional routing introduces overheads on
routers, including lookup time and storage. For fast lookup,
previous studies make use of TCAM in hardware, the de
facto standard in industry due to its constant lookup
speeds. However, TCAM-based solutions have limited
capacity, high price and high power consumption [37].
Many previous works proposed algorithmic solutions, such
as trie-based solutions [9]. Unlike TCAM-based solutions,
these solutions need multiple accesses in memory during
each lookup. [38,39] propose different approaches to make
the trie-based structure more compact, and reduce the
number of accesses for faster speed. In this paper, to make
our study focused, we use the number of bits to be checked
as an indicator for the overheads. We want to emphasize
that less bits also lead to less storage and less energy con-
sumption with both TCAM-based or trie-based solutions.

Incremental design is advocated [40] for network
layer proposals. Many incremental solutions have been
Beijing Tianjin Jinan Wuhan Guang

20

40

60

80

100

120

N
um

be
r o

f B
its

21 21 21 19 22

yed nodes on CERNET2. (b) Size of minimum bit-lookup set on routers on

Fig. 17. CERNET2 topology.

Table 6
Maximum utilization of routers in CERNET2.

Beijing Jinan Tianjin Wuhan Guangzhou

28.57% 39.56% 46.82% 30.20% 64.28%

M. Xu et al. / Computer Networks 59 (2014) 227–243 241
proposed for IPv6 routing [41], interdomain security rout-
ing [42], multicast routing [43], information centric net-
work [44], overlay network [13], and various future
Internet routing schemes [45]. In this paper, we focus on
high dimensional routing, which needs a design from
scratch. Beside, most previous works just sketch their
incremental plans, while we want to find the route-level
deployment, that lets ISPs gain the most and pay the least
during partial deployment.

We use TwoD-IP as an example, because (1) it make
our paper succinct while it can be easily extended to
higher dimensions (e.g., including DSCP values and flow
labels); (2) destination and source addresses contain
the most important information in networks; and (3)
CERNET2 is facing such deployment issues in the real-
world.
9. Conclusion and future work

In this paper, we presented a study of TwoD-IP routing
where the forwarding decisions is not only based on the
destination IP addresses but also on the source IP ad-
dresses. Our focus is on incremental deployment require-
ment, a practical concern of CERNET2. We formulated our
problem such that we need to find a deployment sequence
under the constraints of router capacity. We proved the
problem to be NP-complete. We then transformed our
problem to boolean clauses and developed an efficient
algorithm following the principles of branch-and-bound
algorithm for MAX-SAT.

We evaluated our algorithms comprehensively using
CERNET and other topologies. We showed that by deploy-
ing a few nodes suggested by our deployment sequence
can successfully manage the traffic flows and introduces
small overheads to the routers. We then presented a case
study on CERNET2 and provided a fine deployment
sequence.

In our current study, we did not take network failure
into consideration. We put it into our future work as net-
work failure recovery could cause traffic rerouting. In
[46], a general architecture is proposed for joint failure
recovery and traffic engineering where it could be applied
to our scenario.

Based on our specific consideration, we use hamming
metric to represent the deviation between paths. While
there are other meaningful metrics in graph theory,
using some of them (such as Jaccard index [47]) also
has the property, where the base configuration of each
iteration evolves from the final state of the previous iter-
ation. In this paper, we just use hamming distance as an
example, because it is simple, widely used and meaning-
ful in real-world. Our next work includes trying different
metrics for other considerations. We assertively use sum-
mation of individual path distance to express the total
deviation, validation and comparison with other metrics
(e.g., maximum path deviation) also belong to our future
work.

Acknowledgment

The research is supported by the National Basic Re-
search Program of China (973 Program) under Grant
2012CB315803, the National Natural Science Foundation

242 M. Xu et al. / Computer Networks 59 (2014) 227–243
of China (61073166, 61133015),the National High-Tech
Research and Development Program of China (863 Pro-
gram) under Grants 2011AA01A101.

Appendix A

A.1. Proof for Observation 2

Proof. DðVIPðtÞ;LðG;F ; PsÞÞ ¼ 0 if and only if
Cðv ; PsðtÞÞ ¼ 1;8v 2 VIPðtÞ.

It’s easy to prove that it is a sufficient condition. With
precondition that Cðv0

t ; PsðtÞÞ is 1, suppose that for all j < k,

Cðv j
t ; PsðtÞÞ are 1. Then if s childðvk�1

t ; PsðtÞÞ ¼ vk
t ,

Cðvk
t ; PsðtÞÞ must be 1, else according to Observation 2 we

have hvk�1
t
¼ 1, thus Cðvk

t ; PsðtÞÞ is 1. So we can conclude

that all clauses Cðv ; PsðtÞÞ are 1.

Then we prove that the condition is necessary. According

to Algorithm 1, if s_childðv j
t; PsðtÞÞ–v jþ1

t and hv j
t
–1, there

must exist k0 < j such that s childðvk0
t ; PsðtÞÞ ¼ v jþ1

t

ðs childðvk0
t ; PsðtÞÞ–vk0þ1

t Þ and hvk0
t

–1. Indicating there must

be k1 < k0 such that s childðvk1
t ; PsðtÞÞ–vk1þ1

t and hvk1
t

–1.

Thus there is a integer sequence k0 > k1 > k2 . . . until
kl ¼ 0ðl > 0Þ, obviously, if s childðv0

t ; PsðtÞÞ–v1
t ; hv0

t
must

equal to 1 (else Cðv1
t ; PsðtÞÞ will be 0). Thus the assumption

is false. h

References

[1] C. De Launois, M. Bagnulo, The paths toward IPV6 multihoming,
Communications Surveys Tutorials, IEEE 8 (2) (2006) 38–51.

[2] F. Baker, P. Savola, Ingress Filtering for Multihomed Networks, RFC
3704 (Best Current Practice), March 2004.

[3] Cisco, Policy-Based Routing (White Paper), 1996.
[4] Juniper, Multi-Topology Routing (White Paper), Augest 2010.
[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in
campus networks, SIGCOMM Computer Communication Review 38
(2) (2008) 69–74.

[6] F. Baker, Routing a traffic class, Internet Draft, draft-baker-fun-
routing-class-00, January 2012.

[7] F. Baker, IPv6 Source/Destination Routing using OSPFv3, Internet
Draft, draft-baker-ipv6-ospf-dst-src-routing-00, February 2013.

[8] M. Xu, S. Yang, D. Wang, J. Wu, Two dimensional-ip routing, in: Proc.
IEEE ICNC’13, San Diego, USA, 2013.

[9] G. Varghese, Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices, Morgan Kaufmann, Waltham,
MA, 2005.

[10] F. Yu, R. Katz, T. Lakshman, Gigabit rate packet pattern-matching
using tcam, in: Proc. IEEE ICNP’04, Berlin, Germany, 2004.

[11] B. Agrawal, T. Sherwood, Modeling tcam power for next
generation network devices, in: Proc. IEEE ISPASS’06, Austin,
Texas, 2006.

[12] R. Zhang-Shen, N. McKeown, Designing a predictable internet
backbone with valiant load-balancing, in: Proc. IEEE IWQoS’05,
Passau, Germany, 2005.

[13] X. Yang, D. Wetherall, Source selectable path diversity via routing
deflections, in: Proc. ACM SIGCOMM’06, New York, NY, 2006.

[14] S. Ho, M. Gendreau, Path relinking for the vehicle routing problem,
Journal of Heuristics 12 (2006) 55–72.

[15] L. Trevisan, When hamming meets euclid: the approximability of
geometric tsp and mst, in: Proc. ACM STOC’97, El Paso, TE, 1997.

[16] V. Sekar, S. Ratnasamy, M.K. Reiter, N. Egi, G. Shi, The middlebox
manifesto: enabling innovation in middlebox deployment, in: Proc.
ACM HotNets’11, Cambridge, Massachusetts, 2011.
[17] K. Fall, P.B. Godfrey, G. Iannaccone, S. Ratnasamy, Routing tables: is
smaller really much better? in: Proc. ACM HotNets’09, New York, NY,
2009.

[18] U. Feige, G. Kortsarz, D. Peleg, The dense k-subgraph problem,
Algorithmica 29 (2001) 410–421.

[19] T. Alsinet, F. Manya, J. Planes, Improved branch and bound
algorithms for max-sat, in: Proc. Theory and Applications of
Satisfiability Testing (SAT’03), Portofino, Italy, 2003.

[20] B. Selman, H. Levesque, D. Mitchell, A new method for solving hard
satisfiability problems, in: Proc. of the Tenth National Conference on
Artificial Intelligence (AAAI’92), San Jose, CA, 1992.

[21] J. Hooker, V. Vinay, Branching rules for satisfiability, Journal of
Automated Reasoning 15 (1995) 359–383.

[22] C. Labovitz, G. Malan, F. Jahanian, Internet routing instability, IEEE/
ACM Transactions on Networking 6 (5) (1998) 515–528.

[23] C. Meiners, A. Liu, E. Torng, Hardware Based Packet Classification for
High Speed Internet Routers, Springer, 2010.

[24] V. Srinivasan, G. Varghese, Faster ip lookups using controlled prefix
expansion, in: Proc. ACM SIGMETRICS ’98, Madison, Wisconsin,
United States, 1998.

[25] P. Slavík, A tight analysis of the greedy algorithm for set cover, in:
Proc. ACM STOC’96, Philadelphia, Pennsylvania, United States, 1996.

[26] M. Garey, D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Company, New York,
NY, 1990.

[27] U. Feige, A threshold of ln n for approximating set cover, Journal of
the ACM 45 (1998) 634–652.

[28] J. Argelich, Max-sat formalisms with hard and soft constraints, AI
Communications 24 (2011) 101–103.

[29] Brite: Boston University Representative Internet Topology
Generator. <http://www.cs.bu.edu/brite>.

[30] X. Zhao, Y. Liu, L. Wang, B. Zhang, On the aggregatability of router
forwarding tables, in: Proc. IEEE INFOCOM’10, San Diego, CA, 2010.

[31] Q. Li, D. Wang, M. Xu, J. Yang, On the scalability of router forwarding
tables: Nexthop selectable fib aggregation, in: Proc. IEEE
INFOCOM’11, Mini-Conference, Shanghai, China, 2011.

[32] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, Measuring isp
topologies with rocketfuel, IEEE/ACM Transactions on Networking
12 (1) (2004) 2–16.

[33] J. Fu, J. Rexford, Efficient ip-address lookup with a shared forwarding
table for multiple virtual routers, in: Proc. ACM CoNEXT’08, Madrid,
Spain, 2008.

[34] P. Laskowski, B. Johnson, J. Chuang, User-directed routing: from
theory, towards practice, in: Proc. ACM NetEcon’08, Seattle, WA,
USA, 2008.

[35] J. Wu, J. Bi, M. Bagnulo, F. Baker, C. Vogt, Source address validation
improvement framework, Internet Draft, draft-ietf-savi-framework-
04, March 2011.

[36] Cngi-cernet2 savi Deployment Update, March 2011. <http://
www.ietf.org/proceedings/80/slides/savi-2.pdf>.

[37] C.R. Meiners, A.X. Liu, E. Torng, J. Patel, Split: optimizing space,
power, and throughput for tcam-based classification, in: Proc. ACM/
IEEE ANCS’11, Brooklyn, NY, 2011.

[38] H. Song, J. Turner, J. Lockwood, Shape shifting tries for faster ip route
lookup, in: Proc. IEEE ICNP’05, Boston, MA, USA, 2005.

[39] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding
tables for fast routing lookups, in: Proc. ACM SIGCOMM’97, Cannes,
France, 1997.

[40] D. Thaler, B. Aboba, What Makes for a Successful Protocol? in: RFC
5218 (Informational), July 2008.

[41] J. Wu, Y. Cui, C. Metz, E. Rosen, Softwire Mesh Framework, RFC 5565
(Standards Track), June 2009.

[42] J. Rexford, J. Feigenbaum, Incrementally-deployable security for
interdomain routing, in: Proc. IEEE CATCH’09, Washington, DC, USA,
2009.

[43] X. He, C. Papadopoulos, P. Radoslavov, Incremental deployment
strategies for router-assisted reliable multicast, IEEE/ACM
Transactions on Networking 14 (4) (2006) 779–792.

[44] S. Fayazbakhsh, A. Tootoonchian, Y. Lin, A. Ghodsi, K. Ng, B. Maggs, V.
Sekar, S. Shenker, Less pain, most of the gain: incrementally
deployable icn, in: Proc. ACM SIGCOMM’13, Hongkong, China, 2013.

[45] R. Grandl, D. Han, S.-B. Lee, H. Lim, M. Machado, M. Mukerjee, D.
Naylor, Supporting network evolution and incremental deployment
with xia, SIGCOMM Computer Communication Review 42 (4) (2012)
281–282.

[46] M. Suchara, D. Xu, R. Doverspike, D. Johnson, J. Rexford, Network
architecture for joint failure recovery and traffic engineering, in:
Proc. ACM SIGMETRICS’11, San Jose, CA, 2011.

[47] Jaccard Index. <http://www.en.wikipedia.org/wiki/Jaccard_index>.

http://refhub.elsevier.com/S1389-1286(13)00375-7/h0005
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0005
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0010
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0010
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0010
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0010
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0015
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0015
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0015
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0015
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0020
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0020
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0025
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0025
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0030
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0030
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0035
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0035
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0040
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0040
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0040
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0045
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0045
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0045
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0045
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0050
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0050
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0055
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0055
http://www.cs.bu.edu/brite
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0060
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0060
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0060
http://www.ietf.org/proceedings/80/slides/savi-2.pdf
http://www.ietf.org/proceedings/80/slides/savi-2.pdf
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0065
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0065
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0065
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0070
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0070
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0070
http://refhub.elsevier.com/S1389-1286(13)00375-7/h0070
http://www.en.wikipedia.org/wiki/Jaccard_index

Networks 59 (2014) 227–243 243
Mingwei Xu received the B.Sc. degree and the
Ph.D. degree from Tsinghua University. He is a
full professor in Department of Computer
Science at Tsinghua University. His research
interest includes computer network architec-
ture, high-speed router architecture and net-
work security. He is a member of the IEEE.

M. Xu et al. / Computer
Shu Yang received the B.Sc. degree from Bei-
jing University of Posts and Telecommunica-
tions. He is a Ph.D. candidate in Department of
Computer Science at Tsinghua University. His
research interest includes computer network
architecture, network security and high per-
formance router.
Dan Wang received his B. Sc from Peking
University, Beijing, M. Sc from Case Western
Reserve University, Cleveland, OH, and Ph. D.
from Simon Fraser University, Vancouver,
Canada, all in Computer Science. He is an
Assistant Professor of Department of Com-
puting, The Hong Kong Polytechnic Univer-
sity, Hung Hom, Kowloon, Hong Kong. His
research interest includes Sensor Networks,
Internet Routing and Applications. He is a
member of the IEEE.
Jianping Wu received his B.S., M.S., and Ph.D.
from Tsinghua University. He is a Full pro-
fessor and director of Network Research Cen-
ter, Ph.D. Supervisor of Department of
Computer Science, Tsinghua University. From
1994, he has been in charge of China Educa-
tion and Research Network (CERNET). His
research interests include next generation
Internet, IPv6 deployment and technologies,
Internet protocol design and engineering. He
is an IEEE fellow.

	Efficient Two Dimensional-IP routing: An incremental deployment design
	1 Introduction
	2 Background and the optimal incremental deployment problem
	2.1 Background on TwoD-IP routing
	2.2 The optimal incremental deployment problem

	3 Incremental unconstrained deployment
	4 Increment constrained deployment
	4.1 Feasible bit-lookup set
	4.2 Minimum bit-lookup set
	4.3 Incremental constrained deployment

	5 Discussion and improvement
	6 Performance evaluation
	6.1 Simulation setup
	6.1.1 BRITE topology
	6.1.2 Real topology

	6.2 Simulation results
	6.2.1 Incremental unconstrained deployment
	6.2.2 Adaptive forwarding
	6.2.3 Incremental constrained deployment
	6.2.4 Simulation results on CERNET

	7 TwoD-IP Routing for CERNET2: a case study
	8 Related work
	9 Conclusion and future work
	Acknowledgment
	Appendix A
	A.1 Proof for Observation 2

	References

