52 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

LTTP: An LT-Code Based Transport Protocol for
Many-to-One Communication in Data Centers

Changlin Jiang, Dan Li, Member, IEEE, and Mingwei Xu, Member, IEEE

Abstract—TCP has been widely adopted in current data
centers to ensure reliable data delivery. However, recently TCP
Incast was found to occur in many-to-one communications with
barrier-synchronized requirement, where the TCP goodput drops
dramatically. Previous solutions to TCP Incast either require
updating the OS/hardware to support fine-grained timers, or
smartly control utilization of the switch buffer to reduce the
probability of buffer overflow and packet loss.

In this paper we explore a different approach to support
many-to-one communication in data center networks, which
we call LTTP (LT-code based Transport Protocol). LTTP im-
proves LT (Luby Transform) code to achieve reliable UDP-
based transmission by exploiting data redundancy, and employs
TFRC (TCP Friendly Rate Control) to adjust the traffic sending
rates at servers. NS-2 based simulation shows that the goodput
of LTTP never degrades with the increase of the number of
servers in many-to-one communications, and LTTP significantly
outperforms DCTCP [1] when the number of servers is large.
Simulation results also demonstrate that LTTP flows can fairly
share bandwidth with TCP flows.

Index Terms—TCP Incast, digital fountain, TCP-friendly, LT
code.

I. INTRODUCTION

LOUD computing realizes the dream of “computing as a

utility”. People outsource their computing and software
capabilities to cloud providers and pay for the service usage
on demand. In the cloud data centers, tens of thousands of, or
even hundreds of thousands of servers are interconnected by
the network infrastructure, to carry out large-scale distributed
computation with SLA (Service Level Agreement) guarantees.
In consideration of economical cost, cloud providers tend to
use low-end commodity servers and switches to build the data
center, and the reliability and performance requirements are
met by upper-layer software.

Cloud data centers run both online services, such as search
and social network, and back-end computations, such as
MapReduce [2] and GFS [3]. Since most distributed computa-
tions in data centers are bandwidth-hungry, advanced network
topologies, e.g., Fat-Tree [4] and VL2 [5], are proposed to
increase the network capacity. In these topologies, a large
number of 1GE or 10GE COTS (commodity, off-the-shelf)
switches are interconnected to form a high-radix, low-diameter
data center network. In a non-blocking network infrastructure,

Manuscript received January 15, 2013; revised July 1, 2013.

C. Jiang, D. Li and M. Xu are with the Department of Computer
Science and Technology, and are with Tsinghua National Laboratory for
Information Science and Technology, Tsinghua University, Beijing, China
(e-mail: jiangchanglin@csnetl.cs.tsinghua.edu.cn, tolidan@tsinghua.edu.cn,
xmw @cernet.edu.cn).

Digital Object Identifier 10.1109/JSAC.2014.140106.

the end-to-end network throughput between servers can be up
to 1Gbps and the end-to-end delay is in the order of hundreds
of microseconds, which exposes a shifted network paradigm
from the wide-area Internet.

As for data transmission between servers, TCP is widely
used in today’s data center networks, since it has been proven
a great success in the Internet for both reliable delivery and
congestion control. However, the specific application pattern
and network environment in data centers pose new challenges
to TCP to work smoothly. A recently found problem is
TCP Incast [6], in which TCP experiences severe goodput
collapse in the setting of barrier-synchronized many-to-one
workloads [7]. In this kind of communication pattern, a client
sends requests to multiple servers simultaneously, and the
servers then send data blocks back to the client immediately
upon the requests. The client will not send the next request
until all the requested data blocks have been received.

TCP Incast causes goodput collapse for two reasons. Firstly,
when servers simultaneously send response packets back to the
client, the response packets will overflow the output buffer of
the switch which directly connects the client. Secondly, the
default value of TCP’s Retransmission Timeout (RTO) is 200
milliseconds in most operating systems. It means that once
a timeout occurs, the TCP connections will be idle for quite
a long time period before the servers retransmit the dropped
packets, since the RTT (Round-Trip Time) is only hundreds of
microseconds in data center networks. After the retransmission
timer timeouts, the servers will again simultaneously send the
response packets, which causes switch buffer overflow and
retransmission for a new round, so on and so forth.

The goodput degradation in many-to-one communications
will significantly delay the task finish time of distributed
computations, which is further translated to the violation of
SLA. Since the root cause for TCP Incast is the shallow
buffer in switches as well as the mismatch between RTO
and RTT, existing solutions focus on either preventing flows
from aggressively utilizing the switch buffer, e.g., DCTCP [1]
, ICTCP [8], FQCN [9] and AF-QCN [10], or minimizing
the RTO value [7], [11]. However, fine-grained RTO (e.g.,
microseconds) requires updating the OS or hardware, and
keeping switch buffer utilization low cannot fundamentally
solve the problem when the number of servers is large enough
and packet loss indeed occurs.

Different from previous solutions, in this paper we propose
a new transport protocol to support many-to-one communica-
tions in data centers, which is called LTTP (LT-code based
Transport Protocol). Since TCP’s timeout is the root cause of
low link utilization and goodput deterioration in TCP Incast,

0733-8716/14/$31.00 © 2014 IEEE

JIANG et al.: LTTP: AN LT-CODE BASED TRANSPORT PROTOCOL FOR MANY-TO-ONE COMMUNICATION IN DATA CENTERS 53

SErvers

client

“ Ve e st ~ \..-——-—*'"’_-—-——'_’

shallow-buffered switc~H‘~.‘ .

Fig. 1. A typical setup of TCP Incast. Many servers send data to the client
simultaneously, which overflows the shallow buffer in the TOR switch.

LTTP improves UDP-based LT (Luby Transform) code [12]
for reliable delivery, which depends on FEC (Forward Error
Correction) [13] with data redundancy. Since UDP cannot
fairly share bandwidth with other protocols (such as TCP),
TFRC (TCP Friendly Rate Control) [14] is also applied to
adjust the data sending rates at servers for congestion control.
The intuition behind LTTP’s design is that the rate-based
congestion control scheme of TFRC ensures that the sender
can still send data at an appropriate rate even in face of
congestion, instead of stopping sending data for a relatively
long time. In addition, LT code can restore the original data
without requesting for retransmission as long as the number
of packet losses/errors falls into a reasonable range. Each of
the two schemes is used to overcome the other’s limitations:
TFRC maintains reasonable bandwidth utilization, while UDP-
based LT code ensures reliable data delivery. We will present
the details of our design in section III, and provide analysis
of the design in section IV.

We carry out NS-2 based simulations to evaluate LTTP. The
results show that LTTP can maintain high goodput for many-
to-one communications in different topologies, no matter what
the number of servers is. On the contrary, both standard TCP
and DCTCP experience goodput collapse when the number
of servers is large enough. Besides, our improvement on
the decoding algorithm of LT code effectively improves the
goodput of LTTP, and controls the bandwidth overhead of LT
code below 8%. Note that we do not suggest to completely
replace TCP with LTTP in data centers for all the applications,
because LTTP pays the bandwidth cost for data redundancy.
However, because many-to-one communication is common in
both online services and back-end computations, LTTP shows
its great promise, especially when the number of servers is
large.

The rest of this paper is organized as follows. Section II
introduces the background knowledge. Section III describes
the design of LTTP, and section IV makes the analysis. Sec-
tion V presents the evaluation results. Section VI summarizes
the related works. Finally Section VII concludes the paper.

II. BACKGROUND

Fig. 1 illustrates a typical setup of many-to-one communi-
cation when TCP Incast occurs. The client directly connects
to a TOR (Top-Of-Rack) switch and sends data requests to
a number of servers, and the servers send back the response

data to the client in parallel. The many-to-one communica-
tion pattern is common in both back-end computations, e.g.,
GFS [3] and MapReduce [2], and online services in data
centers. In GFS, files are divided into chunks and stored in
different servers. Many-to-one communication occurs when a
client sends reading requests to all the servers containing the
chunks of a file, and the servers will reply immediately after
receiving the requests. It is similar in the shuffling phase of
MapReduce computation, in which each reducer receives the
intermediate computation results from all the mappers before
the reducing operation. As for online services, an example is
that a user wants to view the photo of her new friend on the
social network, and this request is injected into the data center
where a front-end server redirects the request to a number of
servers that each stores part of the photo.

Note that the bandwidth-delay product (BDP) in data center
networks is small [8], and all the TCP connections from the
servers to the client share the small BDP as well as the shallow
switch buffer (typically the TOR switch directly connecting
the client, as shown in Fig.1). Therefore, when all the servers
send data back to the client simultaneously, it is easy that
the data volume exceeds the sum of the BDP and the switch
buffer size, and then packets get lost. If there are no enough
Duplicated Acks to trigger fast retransmission, the servers will
then wait for a time period of RTO before retransmission. Due
to the mismatch between the RTT (hundreds of microseconds)
and TCP’s RTO (200 milliseconds), there will be a relatively
long period for the TCP connection to be idle. During this
idle period, the TCP connection cannot send any data, and
the client cannot issue the next request, even the data from
all the other servers have been received. As a result, the TCP
goodput collapses.

There are many solutions to TCP Incast, DCTCP [1] and
ICTCP [8] are two most recently proposed solutions. DCTCP
adopts Explicit Congestion Notification (ECN) to keep the
queue length in switch as short as possible, while ICTCP
proposes a congestion control scheme at the receiver side, and
uses receive window to throttle the incast congestion. We will
discuss the related works in detail in section VI.

III. LTTP DESIGN
A. Design Rationale

Since TCP’s timeout is the root cause of low link utilization
and goodput deterioration in TCP Incast, it naturally drives us
to consider UDP instead of TCP for data transmission, because
UDP has no timeout-and-retransmit mechanism. However, it is
challenging to apply UDP in the many-to-one communication
in data centers. First, UDP only provides best-effort service,
and cannot ensure reliable data delivery. Hence, there must be
an additional scheme to offer reliable data transfer, including
checking data integrity and handling out-of-order delivery.
Second, UDP has no congestion control. The constant sending
rates at the servers will not only worsen the congestion
condition when network congestion occurs, but also grab an
unfair share of bandwidth against TCP flows.

We design LTTP, a UDP-based transport protocol to support
many-to-one communication in data centers. LTTP employs
the FEC technique to guarantee reliable packet delivery, and

54 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

applies TCP-friendly mechanism to congestion control. We
choose digital fountain code [15] (specifically, LT code [12])
to achieve reliable data delivery, and adopt TFRC [14] to
adjust the data sending rates and maintain reasonable band-
width utilization. We explain the reasons that we choose these
technologies to design LTTP as follows.

There is a tradeoff between bandwidth overhead (redun-
dancy) and performance when choosing the coding scheme.
For example, some erasure codes, such as Reed-Solomon
erasure codes [16], have very low redundancy and can restore
original data from any set of encoding data whose size is equal
to that of original data; but the time that is required for en-
coding and decoding is unaffordable for realtime transmission,
particularly considering the traffic speed in data centers is as
high as 1Gbps or even 10Gbps.

We choose digital fountain code as the coding scheme.
Firstly, digital fountain code can restore original data from
the encoding data whose size is marginally larger than that of
the original data, introducing reasonable bandwidth overhead.
As we will show later in simulations, the gain we get from
keeping network goodput high significantly outweighs the
bandwidth cost we pay. Secondly, digital fountain code can
provide good performance in encoding and decoding. Thirdly,
digital fountain code only cares about how much encoding
data (enough to restore original data) has been received, rather
than which encoding data are received. Thus, the out-of-order
delivery is not an issue any more. As a consequence, data
loss caused by switch buffer overflow does not have obviously
negative effect to the network throughput.

There are different implementations of digital fountain code,
such as LT code [12] and Raptor code [17]. Although Raptor
code outperforms LT code, we still choose LT code to realize
digital fountain code in LTTP. It is because that when the data
size is small, the performance difference between LT code and
Raptor code is trivial [18]. In the TCP Incast scenario, the
size of data exchanged between client and server is usually
small. In addition, Raptor code needs to generate intermediate
symbols firstly, and then uses these intermediate symbols as
the input of LT code’s encoding algorithm to produce the
encoding data. Therefore, the implementation complexity of
Raptor code is much higher than that of LT code.

As for congestion control, recent work [19] shows that
when all the senders adopt digital fountain based protocols
and act as selfish players to inject data in network as fast as
they can, a Nash equilibrium can be reached eventually. At
this equilibrium state, the throughput of each flow is similar
to that when all the senders use TCP. However, in typical
many-to-one communication pattern when TCP Incast occurs,
the transferred data volume is very small, and it is of high
probability that the Nash equilibrium cannot be reached before
all the data have been transferred. So we still have to spend
extra efforts to deal with congestion control in LTTP.

We simply resort to the existing TCP-friendly mechanisms,
a good summary of which is presented in [20]. Generally,
they can be classified into rate-based schemes and window-
based schemes. To achieve TCP friendliness, the rate-based
schemes adjust the sending rate based on feedback from the
receiver, while the window-based schemes adopt a window
(similar to the congestion window in TCP) at the sender or

receiver. However, the window-based schemes may lead to
a typical sawtooth pattern in the throughput. So we choose
TFRC [14] as the congestion control mechanism in LTTP,
which is rate-based and can provide a smoother sending rate.
The analysis in section IV will show the advantage of rate-
based congestion control in improving bandwidth utilization
for many-to-one communication.

We emphasize that LT code can restore the original data
from any set of encoding data, as long as the number of
packet losses/errors falls into a reasonable range. However, in
severe congestion condition, the packet losses may increase,
and the receiver may not be able to restore original data within
a reasonable time. In extreme cases, the receiver may fail to
receive enough encoding data and restore the original data
successfully. In this case, both encoding process at the sender
side and decoding process at the receiver side enter an endless
loop. The reason is that the encoding process does not receive
the terminating signal and continues to encode data and send
out encoding data, while the decoding process tries to receive
more encoding data to restore the original data. This situation
can be fixed by setting a timer on the sender. If the sender does
not receive the terminating signal before the timer expires, the
sender can terminate the communication actively.

B. Overall Framework

The complete framework of LTTP to support many-to-one
communication in data centers includes two parts, i.e., the data
channel from each server to the client, and the control channel
between the client and each server. In the data channel, we
improve LT code for reliable data transport, and adopt TFRC
for controlling the traffic sending rate at servers. The control
channel is employed by the client to issue data requests to
servers and send terminating signals to the servers as soon as
the requested data have been restored. The servers also use
the control channel to send decoding parameters to the client.
The decoding parameters include the original data size and
block size (the block size is defined at section III-C), which
are used by the client to execute the decoding process (we will
discuss the decoding process in section III-C). For the control
channel messages, the data size is small enough to be put into
a single packet. Hence, it is unnecessary to employ coding
for transmission. Instead, we establish a TCP connection for
each client-server pair to deliver the control channel messages
reliably.

Fig. 2 illustrates the workflow in LTTP. First, the client
establishes control channels (TCP connections) to all the
servers. Second, the client sends requests to all the servers
simultaneously through the control channel, asking the servers
to start sending the data. Third, once receiving the request, the
servers use control channel to send the decoding parameters
back to the client. Meanwhile, each server starts to employ LT
code to produce and send encoding packets continually. TFRC
is used by both servers and the client to control the sending
rate. Finally, as soon as the original data is successfully
restored, the client sends a terminating signal through control
channel back to the corresponding server, which informs the
server to stop encoding.

In our implementation, the upper applications on both the
server side and the client side are responsible for making

JIANG et al.: LTTP: AN LT-CODE BASED TRANSPORT PROTOCOL FOR MANY-TO-ONE COMMUNICATION IN DATA CENTERS 55

/’

— s W
T -
T

switch

client servers

1) establishes TCP connections

Y

2) sends requests

\

3) sends parameters

A

4) send encoding packets

A

5) sends terminating signals

« Y __ _

¢

— Control Channel (TCP) — - —P> Data Channel (UDP)

Fig. 2. The workflow of LTTP. The data channel is from servers to the client,
and the control channel is between the client and servers.

decisions that when to send data and which channel to be used.
For example, when the application on the server side receives
a request, it calls the interface of LTTP to send decoding
parameters back to the client through control channel. Next,
the server starts the encoding process to generate encoding
data and calls the interface of LTTP to transport the encoding
data to the client side through data channel. The application on
the client side calls the interface of LTTP to receive encoding
data and restore the original data. Once the original data is
successfully restored, the application invokes the LTTP to
send the terminating signal to the server through the control
channel.

Note that although we use TCP to transport the control
packets in LTTP, incast congestion will not happen. Firstly, the
requests and terminating signals are sent from the client to the
servers. The data size is small enough to be put into a single
packet. The control packets are disseminated through different
switch ports to servers, so the switch buffer will not overflow.
Secondly, although the decoding parameters are transmitted
from the servers to the client, the data size is very small.
We can use 4 bytes to store the value of both the original
data size and the block size, respectively. Assume there are
45 servers. The sum of packet size is 45%(40+4+4) = 2160
bytes (the 40 bytes field is the IP header and TCP header).
In the extreme case, we suppose that all the packets arrive at
the switch simultaneously, and the switch port buffer is 64KB,
then these packets only take up 3.29% of the buffer size.

C. LT Code based Transport

LTTP depends on LT code, which is one of digital fountain
codes, to realize reliable data delivery in the data channel from
servers to the client.

Digital Fountain Code: Digital fountain [15] is a metaphor.
The encoder (fountain) produces endless encoding packets
(water drops), and a large number of heterogeneous decoders
(buckets with different sizes) receive the encoding packets and
restore the original data (buckets under the fountain to receive

water drops). Once the original data has been restored, the
decoder sends a terminating signal back to the encoder to
inform that the data transfer has been completed.

Digital fountain code has the following features. First, it
only cares about whether enough encoding data (to restore
original data) has been received or not, rather than which
encoding data are received. Second, for k blocks of the original
data, once receivers have received any k(1+¢) blocks of encod-
ing data (e is a small fraction, which is far less than one), the
original data can be quickly restored. Third, the computation
complexity of digital fountain code is almost linear in both
encoding and decoding. Finally, the receiver does not need to
send any feedback signal during data transmission, and the
sender does not need to store and resend any data.

LT Code Transmission: As an implementation of digital
fountain code, LT code [12] has the following encoding
process. First, the original data is divided into many blocks
with equal size, and each block is called an input symbol. The
size of each input symbol is called the block size. Second, LT
code produces encoding symbols on demand. Each encoding
symbol is generated by employing the simple XOR (Exclusive
OR) operations on distinct d input symbols, where d is called
the degree number of this encoding symbol. The degree
number is specified by a degree distribution called Robust
Soliton distribution (Eq. 1). Third, LT code generates an
encoding packet by combining the encoding symbol with the
degree number and the indices of all the input symbols of the
encoding symbol. These extra information is included in each
encoding packet for decoder to restore the data. Based on the
degree number, the encoding packets can be classified into two
categories: single-degree encoding packets (degree number =
1) and multi-degree encoding packets (degree number > 1).
The encoding process is finished when the encoder receives a
terminating signal from the decoder.

The decoding parameters, i.e., original data size and block
size, are used in the following ways. The decoding process
uses block size to decide the size of restored input symbols and
assemble restored data. The original data size divided by block
size equals the number of input symbols, which is used as
input of the standard decoding algorithm shown in Alg. 1. The
decoding process starts when a certain number of encoding
packets have been received.

In Alg. 1, the decoding process restores the input symbols
included in the single-degree encoding packets (lines 2-5).
This set of unprocessed input symbols is called a ripple. Each
input symbol in the ripple is used to check all the received
multi-degree encoding packets (lines 7-25). By comparing the
encoding packets’ indices and the index of input symbol, we
can easily determine whether the input symbol is included in
this encoding packet. If an encoding packet does not contain
the input symbol, we skip this encoding packet, otherwise we
perform the following three operations on the encoding packet:
1) performing XOR operations on the input symbol and the
encoding symbol included in the encoding packet (line 11);
2) subtracting one from the degree number of this encoding
packet (line 12); 3) updating the encoding packet’s indices,
namely, deleting the index of input symbol from this encoding
packet’s indices (line 13). After these operations, if the degree
number of the encoding packet degree number changes to one,

56 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

Algorithm 1: Standard decoding in LT code.

Algorithm 2: Improved decoding of LT code.

1 StandardDecoding(sets, set,,, input_symbol_num)
Input: set,: The set of single-degree encoding packets;
sety,: The set of multi-degree encoding packets;
input_symbol_num: The number of input symbols.
Output: True: The decoding succeeds;
False: The decoding fails.

2 for each packet sp € sets do
3 restore input symbol = from sp;
4 ripple.append(x)
5 end
6 restored_symbol_num < 0;
7 while ripple 2 NULL do
8 1 < ripple.first();
9 for each multi-degree encoding packet mp € set,, do
10 if 7 in mp then
11 mp.encoding_symbol
+ mp.encoding_symbol XOR 1;
12 mp.degree_num <— mp.degree_num — 1;
13 update mp.indices;
14 end
15 if mp.degree_num =1 then
16 restore input symbol y from mp;
17 if y has not been restored yet then
18 ripple.append(y);
19 restored_symbol_num++;
20 end
21 set,,.delete(mp);
22 end
23 end
24 ripple.delete(s);
25 end
26 if restored_symbol_num == input_symbol_num then
27 | return True;
28 end
29 else
3 | return False;
31 end

an input symbol can be restored (line 16). If the input symbol
has not been restored yet, the new input symbol expands
the ripple (line 18), and increases the number of restored
input symbols (line 19). This encoding packet will be deleted
afterwards (line 21). The input symbol will be deleted from
the ripple after all the received multi-degree encoding packets
have been checked (line 24). The decoding process ends when
the ripple becomes empty.

The decoding is successful if all the input symbols have
been restored (line 27), and a terminating signal will be sent
back to the encoder to inform the encoder to terminate the
encoding process. Otherwise it fails and the decoder continues
to receive encoding packets. A newly received single-degree
encoding packet will trigger another round of decoding pro-
cess.

The degree distribution has a close relationship with LT
code’s performance. Eq. 1 shows the Robust Soliton distribu-
tion (i),

1 ImprovedDecoding(set,,)
Input: set,,: The set of multi-degree encoding packets.
Output: NULL

2 repeat

3 repeat

4 receive an encoding packet E;

5 if F.degree_num > I then

6 e < FE.encoding_symbol,

7 for each input symbol d; in e do

8 if d; has been restored then

9 e + ¢ XOR d;;

10 E.degree_num <+
E.degree_num — 1;

11 update E.indices;

12 end

13 end

14 end

15 if F.degree_num =1 then

16 restore input symbol ¢ from E;

17 if © has not been restored yet then

18 | ripple.append(?);

19 end

20 break;

21 end

22 else

23 if E.degree_num > 1 then

24 | set,.append(L);

25 end

26 end

27 until True;

28 while ripple % NULL do

29 | //This part is the same as in Alg. 1

30 end

31 until all input symbols have been restored,

0) p(i) + m(i)

124 = =r < < fOTizl,...,k (1)
21 p(i) + (i)
and p(i) and 7(i) are defined as follows,
) 1/k or i=1
p(i) = . J . 2
17/1i(-1) for i=2,..,k

R / ik for i=1,..,k/R-1

T(1) =S RIn(R/5)/k for i=k/R 3)

0 for i=k/R+ 1, ..,k

where R is the size of ripple and R = c* k*ln(%). Parameter
k equals the number of input symbols, and c is an appropriate
constant coefficient, which is larger than zero. ¢ is the failure
probability for the decoder to restore data. The performance
of LT code can be tuned by adjusting the value of ¢ and 4,
which we will further study in the evaluation section.
Improving the Decoding of LT Code: When implementing
the encoding algorithm of LT code in LTTP, we directly use

JIANG et al.: LTTP: AN LT-CODE BASED TRANSPORT PROTOCOL FOR MANY-TO-ONE COMMUNICATION IN DATA CENTERS 57

input symbol | 1 2 3 |:| degree number

|:| index of input symbol

encoding symbol
e TR I R IR R O
A B C D E F

Fig. 3. An example shows the advantage of the improved decoding algorithm
over the standard decoding algorithm in LT code. The standard decoding
algorithm needs 6 encoding packets to successfully restore all the input
symbols, while our improved decoding algorithm only requires 5.

the one suggested in [12]. But for decoding, we improve the
standard algorithm in [12] for better performance, as shown in
Alg. 2. We add a pre-process procedure to each received multi-
degree encoding packet. The pre-process procedure firstly
removes the encoding symbol from the encoding packet (line
6), and then checks all the input symbols in the encoding
symbol one by one (line 7-13). If the current input symbol has
been restored, we remove the input symbol from the encoding
symbol by performing XOR operation (line 9), and update the
degree number and indices of the encoding packet (line 10-
11). After the pre-process, if the degree number of encoding
packet is one, a new input symbol is restored and is added into
the ripple (only if the input symbol has not been restored yet)
(line 18). While if the degree number of encoding packet is
still larger than one, this encoding packet is added into the set
of multi-degree encoding packets (line 24).

The remaining process is the same as the standard decoding
process. The reasoning behind the improvement is based on
the observation that, as the decoding process goes on, the
number of restored input symbols increases and the probability
of restoring new input symbols from the received multi-degree
encoding packet also increases. Therefore, the pre-process pro-
cedure can restore some input symbols much earlier than the
standard decoding algorithm, making the number of encoding
packets required to restore the original data is smaller than the
number needed by the standard algorithm.

We use Fig. 3 to illustrate the advantage of the improved
decoding algorithm over the standard decoding algorithm in
LT code. There are three input symbols with indices of 1,
2, and 3, respectively. If we use the improved decoding
algorithm, we check every encoding packet when receiving
it. The decoder first receives the encoding packet A. Because
there are no restored input symbols, it does not change A.
When the decoder receives B, the input symbol 2 can be
restored. Then it uses the input symbol 2 to check the received
encoding packet A, and the input symbol 1 can be restored.
Next encoding packets C' and D are received. But since
the input symbols included in C' and D have already been
restored, they are not helpful to the decoding process. When
packet E is received, a new input symbol 3 can be restored
because the input symbol 2 has been restored beforehand. So
far, all the input symbols are restored.

However, if the decoder uses the standard decoding al-
gorithm and starts the decoding process when receiving the

first four encoding packets (whose size has exceeded the
original data size), the decoding process will fail. It will not
restart until another single-degree encoding packet (packet F'
in this example) has been received. So the standard decoding
algorithm needs 6 encoding packets to successfully restore all
the input symbols, while our improved decoding algorithm
only requires 5. We will carry out simulations to further
evaluate the improved decoding algorithm in Section IV.

D. TFRC based Congestion Control

LTTP employs TFRC [14] to conduct rate-based congestion
control in the data channel. TFRC has similar phases to TCP’s
slow start and congestion avoidance. The server (sender) uses
an initial (low) rate to start sending data and enters the slow
start phase. During the slow start phase, in order to reach
the fair share of bandwidth rapidly, the server doubles its
sending rate in every RTT, but the increase of sending rate
is no more than that of TCP, which results in that the slow
start phase of TFRC takes more time than that of TCP. This
is verified in our simulation (section V-E). If a feedback
packet from the client (receiver) indicates that there are packet
loss (i.e., loss event rate is larger than zero), the slow start
phase terminates, and enters the congestion avoidance phase,
in which the server uses information contained in feedback
packets to measure the RTT, and puts the RTT and loss event
rate into Eq. 4 to calculate the upper bound of the sending
rate 1" in bytes/sec [14],

S
T =
R\/2 +trro(31/32)p(1 + 32p2)

where s denotes the packet size, R denotes the RTT, p denotes
the steady-state loss event rate calculated by the client (which
is included in the feedback packets sent back from client),
and tgro denotes the TCP’s RTO value. Eq. 4 is a simplified
version of the throughput equation from [21], which provides
the detailed derivation of this equation.

The client maintains a list to record each received packet’s
sequence number and the timestamp. This information is feed
back to the server, which uses this information to estimate
the RTT. The client is also responsible for measuring the
loss event rate on each data channel, which is fed back to
corresponding servers by piggybacking on feedback packets
through different data channels. The loss event rate is cal-
culated as follows. If the sequence number in the list is not
consecutive, packet losses are detected. A loss event includes
one or more lost packets in a single RTT. The client uses the
sequence number and timestamp to maintain an average loss
interval, which is used to divide loss events into different loss
intervals. Then the loss event rate is calculated from these
loss intervals. In order to decrease the jitter of sending rate
and perform only one rate update per RTT, TFRC chooses
loss event rate, instead of loss rate, to notify congestion. The
details of RTT measurements and calculation of loss event rate
can be referred to from [22].

Furthermore, TCP uses congestion window to limit the
number of on-the-fly packets. In contrast to TCP, TFRC de-
pends on the feedback from receiver to control the data volume
injected into network when congestion occurs. However, the

“

58 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

feedback report from receiver can be delayed by congestion
or dropped by a link failure. In these cases, the sender should
reduce its sending rate and even stop sending any data if
these conditions continue. Hence in order to handle these
situations, TFRC uses a NoFeedBack timer. The value of this
timer roughly equals two times of RTT. When the timer is
triggered, the sender halves the sending rate, and reset the
timer. If this timer is expired for several times in a row, the
sending rate will decrease exponentially. The sending rate will
be recalculated as soon as a feedback packet is received.

IV. ANALYSIS

In this section, we analyze why LTTP outperforms TCP in
many-to-one communications. From the discussion in section
II, we know that TCP’s timeout is the reason to cause perfor-
mance degradation. During that period, TCP cannot send any
data, resulting in bandwidth under-utilization. In contrast to
TCP, LTTP adopts TFRC to implement rate-based congestion
control. Let’s focus on how LTTP handles congestion in many-
to-one communication now.

When congestion occurs and packet gets lost, there are two
possible conditions. First, no packets arrive at the receiver
for a long time, so the receiver cannot measure the loss
event rate, and no feedback message is sent back to the
sender. If it lasts long enough that the NoFeedBack timer of
TFRC expires, the sender will cut its sending rate in half.
Second, part of the packets arrive at the receiver, but there
exist sequence gaps in the received packets, which means
there are packet losses. Then the receiver can calculate the
loss event rate and send feedback packet to the sender. After
receiving the feedback packet, the sender measures the RTT
and uses Eq. 4 to calculate the new rate, and reduces its
sending rate accordingly. In both conditions, LTTP does not
stop sending data. Instead, it sends data at the old rate before
reducing rate. Compared with TCP which stops sending data
at all in the scenarios, LTTP can utilize the bandwidth much
more efficiently. Although LTTP’s slow response to congestion
may aggravate congestion before reducing its rate, we argue
that this effect is temporary, and the more efficient usage of
bandwidth outweighs the negative effect.

We use NS-2 [23] to verify our analysis in a simple scenario,
in which a sender and a receiver are interconnected through
a switch. The sender applies LTTP to send data in one
simulation while uses TCP in another. We get the behavior of
LTTP and TCP in handling congestion through analyzing the
trace data. Without losing generality, in order to minimize the
size of trace data, we set the link bandwidth as 15 Mbps, and
the link delay as 20ms (i.e., the RTT from sender to receiver
is 80ms). Both simulations last for 0.6 seconds. We keep the
link between the switch and the receiver down for 20ms (from
0.2s to 0.22s) to simulate a short period of severe congestion
(i.e., switch buffer overflow) when many servers send data to
the client in parallel in many-to-one communication. Fig. 4
shows the result.

The blue line represents the change trend of LTTP’s sending
rate, while the orange line shows the variation of TCP’s
congestion window. TCP increases its congestion window to
4 at around 0.16s, sends out 4 packets, and waits for ACKs.

50000 T T T 5
LTTP’s Sending Rate —4—
TCP’s CWnd

EN 4

@ 40000
2 g
= e
) \ §
2 30000 3z
o
= o)
£ o
e)
2 20000 | el 2 8
@ \ / ®
5)
a S
E 100001t/ 1 F
-
0 0
0 0.1 02 03 04 05 06

Time (s)

Fig. 4. TCP and LTTP’s response to congestion. TCP experiences a timeout,
and result in bandwidth underutilization. LTTP can efficiently utilizes the
bandwidth even in face of congestion.

Unfortunately, these 4 packets are all dropped because of
congestion (which lasts from 0.2s to 0.22s). The sender cannot
send more data, and has to keep waiting for the ACKs until
the RTO expires to reset the congestion window to 1 at about
0.36s. During this period (0.2s), TCP does not send any data,
even though the bandwidth is available (from 0.22s to 0.36s).
While during the congestion period, the packets that sent by
LTTP are dropped either, so there is no feedback sent back to
urge sender to reduce rate, and the sender still sends packets at
the old rate. However, once the congestion situation mitigates
and the bandwidth is available, packets will successfully arrive
at the receiver. Then the receiver will calculate loss event
rate and send feedback packet to ask the sender to reduce
its rate. We can verify this handling from the result. After the
congestion, the sender firstly adjusts its rate at about 0.3s. It
is roughly one RTT (0.08s) after congestion disappears (0.3
- 0.22 = 0.08s), which is exactly the period from sending
a packet to receiving its feedback packet. The result also
demonstrates that the change trend of LTTP’s sending rate
is similar to that of TCP’s congestion window.

V. EVALUATION

A. Simulation Setup

We use NS-2 [23] to evaluate the performance of LTTP. We
let the client and all the servers connect to a single switch,
and the client and all the servers deploy LTTP. All links have
1Gpbs capacity, and the RTT is set as 100 microseconds. We
simulate the many-to-one communication by letting the client
request data from various numbers of servers. We observe the
goodput at the client. If not specified, each switch port has
exclusively 64KB buffer. We vary the data chunk size from
64KB, 128KB, to 256KB. For all simulations, the block size
in LT code is 1024 bytes. Note that the XOR operations in
the encoding and decoding process of LT code only introduce
linear computation overhead, hence in the simulation we
do not take the processing delay in encoding/decoding into
consideration when measuring the transmission delay.

JIANG et al.: LTTP: AN LT-CODE BASED TRANSPORT PROTOCOL FOR MANY-TO-ONE COMMUNICATION IN DATA CENTERS 59

TABLE I
BANDWIDTH OVERHEAD OF LTTP

Data Size
Metric
64KB 128KB | 256KB
Number of received packets 68 137 271
Average degree number 4.29 4.73 6.88
Bandwidth overhead (%) 6.62 7.29 6.27

1000 Improved decoding(64KB) === ' Standard decoding(64KB) —3¢—
Improved decoding(128KB) =—=— Standard decoding(128KB) =—&—
Improved decoding(256KB) —— Standard decoding(256KB) =——de—
800 [
2 -
s
= 600 - X
=]
o
°
o
o
S 400 - A
E
B |
200 y

0 i i
5 10 15 20 25 30 35 40 45

Number of servers

Fig. 5. Goodput of LTTP with different decoding algorithms. The improved
decoding algorithm greatly promotes the LTTP goodput.

B. Parameters in LT Code

As stated in Section III, we adjust the value of constant
coefficient ¢ and failure probability 6 when calculating R in
Eq. 3 to tune the performance of LT code. We firstly evaluate
the impacts of the two parameters on the goodput of LTTP.
We vary ¢ within [0.1,10] and § within [0.1,0.9]. Because we
only care the performance of LT code here, we use just one
client-server pair in this group of simulation.

From the results, we find that the failure probability § has no
obvious impact on the LTTP goodput, and the LTTP goodput
is higher when the value of constant coefficient c is less than
1. Due to space limitations, we omit the details of simulation
results. For all the following simulations, we choose ¢ = (0.2
and 6 = 0.7.

C. Decoding Improvement of LT Code

Then we conduct simulations to evaluate our improvement
on the decoding algorithm of LT code. We use both the stan-
dard LT decoding algorithm and the improved LT decoding
algorithm in LTTP to compare their goodputs.

From the simulation result shown in Fig. 5, we can see
that the improved decoding algorithm greatly promotes the
goodput of LTTP, especially when the number of servers is
large. For instance, when there are 45 servers and the data size
is 256KB, the goodput of the standard LT code is 112.18Mbps
while that of improved LT code is 790.48Mbps. The enhance-
ment comes from that the improved decoding algorithm needs
less encoding packets to restore the original data, which will
reduce the amount of transferred data in the network, and
accordingly improves the network goodput. Besides, we find
that larger data size results in higher throughput in LTTP. It
is because larger data size can produce ripple with larger
size, which means during the decoding process, there are
more input symbols used to restore other input symbols. For
all the following simulations, we use the improved decoding
algorithm in LTTP.

D. Bandwidth Overhead of LTTP

We define the bandwidth overhead of LTTP as the ratio of
additional data size introduced by LT code over the original
data size. The bandwidth overhead comes from two parts.
First, LT code needs extra bytes to record the encoding
information for receiver to successfully restore the original
data. In our current implementation, for each encoding packet,
we use one byte to record the degree number and one byte for
the index of each input symbol. Second, LT code introduces
redundancy, so the size of encoding symbols required to
successfully restore the original data is larger than the original
data size.

We run the simulation on a single pair of client and server,
for data sizes of 64KB, 128KB and 256KB, respectively. The
block size is still set as 1024 bytes. During the simulation
period, the encoding data received at the client are recorded,
and then we use the information included in these encoding
data to calculate the bandwidth overhead.

The results are shown in Table I. Generally, the bandwidth
overhead of LTTP is between 6-8%, which is affordable in
most cases. We can further adopt other schemes to reduce the
bandwidth overhead, such as arithmetic coding [24], which can
encode the indices of all the input symbols in each encoding
symbol as a single double number. However, the cost is the
increased computation overhead at the servers and the client.

E. LTTP Vs. TCP

We now compare LTTP with TCP to check the effectiveness
of LTTP in mitigating TCP Incast. We run both LTTP and
TCP NewReno in the many-to-one communication scenario.
The number of servers is varied from 1 to 45. For TCP, we
choose the packet size of 1024 bytes, which equals the block
size adopted in LT code. In order to mitigate the impact of
randomness of LT code, we run every simulation of LTTP for
10 times, and calculate the average goodput. Fig. 6 shows the
results.

We find from the figure that when the number of servers
is small (less than 15), TCP Incast hardly occurs. Under this
condition, TCP outperforms LTTP, because LT code introduces
bandwidth overhead (as measured in Section V-D). In our
simulation, the goodput of TCP is about 950 Mbps, while that
of LTTP is around 700Mbps. But as the number of servers
increases, the data sent from the servers easily overflows
the switch buffer, which causes TCP Incast and goodput
degradation as low as tens of Mbps. However, the goodput
of LTTP maintains above 750Mbps in most settings. In the
case when the number of servers is 36 and the data size is

60 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

1000
800 |
}.
2
& 600
=3 LTTP(64KB) ——
= LTTP(128KB) —&—
a LTTP(256KB) —%—
8 400 [TCP(64KB) ——
8 TCP(128KB) —6—
TCP(256KB) —a—
| p st anansd b
) &‘ AAAD
A
o
O Q) Il Il Il Il Il

0 5 10 15 20 25 30 35 40 45
Number of servers

Fig. 6. Goodput of TCP and LTTP against the number of servers in many-
to-one communication. LTTP never experiences goodput collapse.

64KB, the goodput of LTTP is 770Mbps while that of TCP is
only 93Mbps.

The reason that LTTP achieves much higher goodput than
TCP when the number of servers is large lies in two aspects.
On one hand, LT code only cares whether enough encoding
packets have been received or not, instead of which encoding
packets have been received. So even when switch buffer
experiences overflow (this cannot be avoided, because in
extreme cases, only two packets from each server can overflow
the switch buffer), the dropped data will not bring many
negative effects to LTTP. On the other hand, servers do not
adopt the timeout-and-retransmit mechanism, so the packet
loss caused by buffer overflow does not cause the servers to
stop sending data over a relatively long time.

We also observe that when the number of servers is smaller
than 5, the goodput of LTTP is less than 600Mbps. The reason
is that TFRC is less aggressive than TCP to grab available
bandwidth in slow start phase, and increases its sending rate
more slowly than TCP [14]. Hence, the slow start phase of
TFRC takes more time than that of TCP. Meanwhile, when the
number of servers is small, there is no packet loss. Considering
the data volume sent by every server is small, the time spent
on the slow start phase accounts for the majority of the
whole transfer time. Since the slow start phase of TFRC takes
more time than that of TCP, LTTP obtains lower goodput
compared with TCP. We should note that, ICTCP [8] also
encounters this phenomenon. However, from the simulation
results, we can clearly see that the low performance of LTTP
during the slow start phase does not affect its performance
when the number of servers increases. When the number of
servers is large, the LTTP goodput (700~-800Mbps) is less
than the theoretical value of ~900Mbps (considering about
8% bandwidth overhead of LTTP). This is attributed to the fact
that when the number of servers is large, there will be packet
loss when multiple servers send the data simultaneously, which
may cut down the goodput.

F. LTTP Vs. DCTCP

Next we compare LTTP with DCTCP, which mitigates
TCP Incast by controlling the utilization of switch buffers.

In DCTCP, the low and high thresholds of ECN are set as
the same value, which is specified by marking threshold K.
DCTCP detects the congestion condition by estimating the
fraction of marked packets, and accordingly decreases the
congestion window properly. In estimating the fraction of
marked packets, DCTCP uses a parameter g (0 < g < 1)
to represent the weight given to new samples, so as to smooth
the traffic sending rate. We use the Stanford implementation on
NS-2.35 [25] to run DCTCP. Similar as the simulations above,
we choose packet size of 1024 bytes and vary the number of
servers from 6 to 45. We also run every simulation of LTTP
for 10 times to mitigate the impact of randomness of LT code,
and calculate the average goodput. In this group simulations,
we set two different buffer sizes for each switch port, i.e.,
64KB and 128KB.

Parameter Choice in DCTCP: We conduct a group of
simulations to figure out the optimal parameters in DCTCP,
particularly, the marking threshold K and the sampling weight
g, for different switch buffer sizes. The results show that when
the switch buffer size is 64KB per port, the optimal parameter
values are K = 4 and g = 0.15; while when the switch
buffer size per port is 128KB, the optimal parameter values
are K =20 and g = 0.0625, which verifies the result in [1].

Goodput Comparison between LTTP and DCTCP: We
compare the goodput between DCTCP and LTTP with differ-
ent data sizes fetched from servers, i.e., 64KB, 128KB, and
256KB. Fig. 7 shows the results.

We find that the goodput of LTTP does not vary much with
different numbers of servers, and keeps the goodput around
700Mbps (for larger data size, the goodput even exceeds
800Mbps). However, the goodput of DCTCP depends on the
number of servers in the many-to-one communication. When
the number of servers is small, the DCTCP goodput is as high
as 950Mbps. But when the number of servers is more than 25
for 64KB switch buffer and more than 34 for 128KB switch
buffer, DCTCP experiences goodput collapse. It is because
when the number of servers is small, even the data from all the
servers arrive at the output port of the switch simultaneously,
the buffer size is still enough to hold them. But when the
number of servers is large enough, even if each server sends
a single packet, buffer overflow and TCP Incast can occur.

Putting Fig. 7 and Fig. 6 together, we get that compared
with standard TCP, DCTCP actually increases the number of
servers it can support before TCP Incast occurs, instead of
fundamentally solve the TCP Incast problem. However, the
goodput of LTTP does not degrade with the growth of the
number of servers, and the phenomenon of goodput collapse
never happens. Therefore, LTTP shows its great promise
in supporting many-to-one communication in data centers,
especially when the number of servers is large.

Congestion Window Evolvement in DCTCP: We check
the evolvement of the congestion window (CWND) on a server
in DCTCP to clearly explain why DCTCP still experiences
TCP Incast when the number of servers is large. We use 16
servers for parallel data transmission to one client. The data
volume sent by each server is 64KB. The buffer size of the
switch port is 64KB, and the packet size is 1024 bytes.

The result is shown in Fig. 8. We can see that before timeout
occurs, the size of CWND is 2.929. The number of in-fly

JIANG et al.: LTTP: AN LT-CODE BASED TRANSPORT PROTOCOL FOR MANY-TO-ONE COMMUNICATION IN DATA CENTERS 61

1000
AAAA A A
800 |-
g %,
600
g X
3 DCTCP(64KB) —+—
T 400 | DCTCP(128KB) —H&—
3 DCTCP(256KB) —¥—
o LTTP(64KB) ——
LTTP(128KB) —6—
LTTP(256KB) —&—
200
-
0
5 10 15 20 25 30 35 40 45
Number of Servers
(a) buffer size=64KB
1000
800
2
& 600
=3
5
o
2 400
3 DCTCP(64KB) ——
© DCTCP(128KB) —H—
DCTCP(256KB) —¥—
LTTP(64KB) —>¢—
200 LTTP(128KB) —&—
LTTP(256KB) —A—

O Il Il Il Il
5 10 15 20 25 30 35 40 45

Number of Servers
(b) buffer size=128KB

Fig. 7. Goodput of DCTCP and LTTP against the number of servers in many-
to-one communication. DCTCP also experiences goodput collapse when the
number of servers is large enough.

packets sent by the server is thus 2. Then at ¢ = 0.00466s,
the first packet gets dropped, while the second packet is
successfully delivered to the client. So the client sends a
duplicate ACK back to the server. However, one duplicate
ACK is not enough to trigger fast retransmission at the
server, and the server cannot send any new data until the
retransmission timer expires.

G. Fat-Tree Topology

Previous simulations are conducted under a simple topol-
ogy, i.e., all servers and the client are interconnected by a
single switch. In order to verify the performance of LTTP
under different network topologies, we compare LTTP with
DCTCP under Fat-Tree network. In this simulation, we use
an 8-ary Fat-Tree topology, which includes 128 hosts in total.
We set the bandwidth of each link as 1 Gbps, and the delay
for each link is 25 microseconds. The switch port buffer is
set to be 128KB. As previous simulations, we set both the
packet size of TCP and the block size of LTTP to be 1024
bytes. Without loss of generality, when simulating the many-
to-one communication pattern, we select the left-most host as
the client, and randomly select a different number of servers

5
4
4.5
4
2 L -
w 3.5 :
x
e 0.003 0.004 0.005
o 3]
=
(@] 2.5 \ 11}
2 r \ i1}
1.5 N
1 et
0.001 0.01 0.1 1
time(s)

Fig. 8. The evolvement of CWND at a server which experiences a timeout
in DCTCP. No enough ACKs to trigger retransmission.

1000

800

600

Goodput (Mbps)

400 DCTCP(64KB) ==—f— LTTP(64KB) =—3¢—
DCTCP(128KB) —=— LTTP(128KB) —e—
DCTCP(256KB) =—J— LTTP(256KB) =—d—
200 z====:1
0

5 10 15 20 25 30 35 40 45
Number of servers

Fig. 9. Goodput of DCTCP and LTTP against the number of servers in many-
to-one communication under Fat-Tree topology. Both DCTCP and LTTP
showcase the same trend as previous simulations. Compared with previous
simulations, the goodput is reduced slightly, which is caused by the larger
RTT.

among other hosts. We vary the number of servers from 6 to
45.

Fig. 9 illustrates the performance comparison between
LTTP and DCTCP under Fat-Tree topology. From the result,
we can see that both LTTP and DCTCP achieve slightly
reduced goodput compared with that in Fig. 7(b). This can
be attributed to the increase of RTT between servers and
the client. We should note that in previous simulations, the
paths between servers and the client have the same length
(i.e., 2 hops). Hence the RTTs between servers and the client
are equal (100 microseconds). While in Fat-Tree topology,
the servers locate in different pods, so the paths between the
client and servers have different hops. Accordingly, the RTTs
between different servers and the client also have different
values, i.e., 100 microseconds (2 hops), 200 microseconds
(4 hops), and 300 microseconds (6 hops), respectively. Both
LTTP and DCTCP in Fig. 9 and Fig.7(b) clearly showcase
the same trend: DCTCP outperforms LTTP when the number

62 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

2 T T 7
LTTP-1 —%— LTTP-5 TCP-4 —4—
LTTP-2 TCP-1 —%— TCP-5 —y—
LTTP-3 —©— TCP-2 —— Mean ——
LTTP-4 —&— TCP-3 —e—
5 15
o
<
(o)}
>
o
e
'_
el
Q
N
©
£
(o]
Z 05
0
0 0.5 1 15 2
Time (s)
(a) Five LLTP flows and Five TCP flows
2 T T T
LTTP-1 —+— LTTP-5 LTTP-9 —a—
LTTP-2 LTTP-6 —6— LTTP-10 —v—
LTTP-3 —¥— LTTP-7 —@— Mean —v—
LTTP-4 —&— LTTP-8 —&—
5 15
o
<
(o)}
>
o
'E
° 1@:-:;:;:;:
9] : r i X Y
g + 4 ! +
©
£
(o]
Z 05
0
0 0.5 1 15 2
Time (s)

(b) Ten LTTP flows

Fig. 10. Normalized throughput is calculated every 200ms when different
servers continuously send data to a same client under the same switch.

of servers is small. However, DCTCP experiences goodput
deterioration when selecting more servers to participate in
the many-to-one communication, and LTTP still maintains
goodput around 700Mbps throughout the simulation. The
reason behind is the same as the one we discussed previously
in section V-F. We also compare LTTP with TCP under Fat-
Tree topology. The simulation result is similar to that shown
in Fig. 6, so we omit the simulation results.

H. Fairness of LTTP

We conduct two simulations to evaluate the fairness of
LTTP. The first simulation includes 5 TCP flows and 5 LTTP
flows, and the second simulation uses 10 LTTP flows. In
the two simulations, all flows continuously send data from
different servers to the same client under the same switch.
We define normalized throughput as the ratio of measured
flow throughput over that of the expected. If the normalized
throughput is closer to 1, the fairness among flows is better.
Fig. 10 shows the results, which tells that LTTP flows can
fairly share bandwidth with both other LTTP flows and TCP
flows. Besides, the overall utilization of the bottleneck link is
always above 99%, indicating that LTTP can make efficient
utilization of link bandwidth, even together with TCP.

VI. RELATED WORKS

Nagle et al. first identify and describe the TCP Incast
phenomenon in distributed storage clusters [6]. By analyzing
the simulation traces, Zhang et al. find that the TCP throughput
deterioration is primarily attributed to two types of timeouts,
namely, BHTO (Block Head TimeOut) and BTTO (Block Tail
TimeOut) [26]. When the number of concurrent servers is
small, BTTO is the main cause for goodput drops. It means
that at least one of the last three packets is lost, and thus TCP
cannot trigger fast retransmission, which results in timeout. On
the other side, when the number of servers is large, BHTO
dominates the goodput degradation. It occurs when the first
window of the data blocks are totally lost, and no more data
can be sent from the servers until the retransmission timer
expires.

The fundamental reason for goodput collapse in TCP Incast
can be attributed to three factors [7]: 1) barrier-synchronized
workload, 2) mismatch between TCP’s RTO and RTT in data
center networks, and 3) limited buffer size in switches. Since
barrier-synchronized workload is determined by applications
with many-to-one communication pattern, all the previous
solutions focus on the latter two factors, i.e., either reducing
the RTO or avoiding switch buffer overflow.

The first category of solutions mitigate TCP Incast by
setting the RTO value to microsecond granularity [7], [11],
which matches the RTT in data centers. Though this type
of solutions are effective in mitigating TCP Incast, updates
to OS and hardware are required to implement microsecond-
grained timers. Furthermore, with the introduction of optical
fibers and optical switches in data centers, even microsecond-
grained RTO may not be able to solve the problem [26].

The second category of solutions modify QCN (Quantized
Congestion Notification), a Layer 2 end-to-end congestion
management scheme introduced in IEEE 802.1Qau [27], to
smartly control utilization of the switch buffer. In essence,
the framework of QCN includes two parts: 1) QCN-enabled
switch. The switch is responsible for monitoring the presence
of congestion in the network and notifying it to the source. 2)
QCN-enabled Network Interface Card (NIC), which receives
the congestion notification sent from switches, and decreases
the sending rate to alleviate the congestion. However, QCN
gets poor performance in TCP Incast setting [9]. The reason
is that QCN cannot ensure rate fairness among different flows
which share the same bottleneck link. FQCN [9] modifies
the algorithm in QCN-enabled switches to achieve fairness
among flows sharing the same bottleneck link, and mitigates
the TCP Incast. AF-QCN [10] proposes an algorithm used
by the switches to achieve flexible weighted fair share of
bandwidth for flows. However, these solutions need to update
both the end hosts and switches.

In addition, the third category of solutions try to keep
the switch buffer utilization low and avoid timeouts through
modifying the congestion control algorithm of TCP, including
ICTCP [8] and DCTCP [1]. ICTCP modifies the congestion
control algorithm by adjusting the receive window size of
each TCP connection based on the measured available band-
width at the receiver, which further controls the sending rates
of the senders and prevents the switch buffer from over-

JIANG et al.: LTTP: AN LT-CODE BASED TRANSPORT PROTOCOL FOR MANY-TO-ONE COMMUNICATION IN DATA CENTERS 63

TABLE 1T
COMPARISON BETWEEN DIFFERENT SOLUTIONS
RTO FQCN/
Metrics (us) DCTCP | ICTCP AF?QCN LTTP
OS update on v v v % v
end host
Hardware
update on end v X X v X
host
Switch « ¥ x ; x
support
Performance
degradation v v v % ~
with more
servers

flow. DCTCP’s core idea is to leverage Explicit Congestion
Notification (ECN) to keep the queue length in switch as
short as possible, while ensuring high network throughput.
DCTCP also modifies ECN by setting both the low and high
threshold of ECN as the same value. A major difference
between DCTCP and TCP is that, DCTCP does not always
cut the congestion window in half when ECN notifications are
received; instead, it decreases the congestion window properly
according to the fraction of marked packets. Nevertheless,
ICTCP and DCTCP cannot fundamentally avoid TCP Incast,
because bursty traffic can indeed overflow the switch buffer.
As shown in our NS-2 based simulations (Section V-F),
when the number of servers is large and there exists traffic
burst, packet loss can still occur, which results in goodput
degradation.

In [28], we present some preliminary results of applying
coding to prevent TCP Incast. But in this paper, we make im-
provements on the decoding algorithm of LT code and design
LTTP as a transport library for many-to-one communications
in data centers.

We compare the existing solutions with LTTP in Ta-
ble II. We get that implementing microsecond-grained RTO
requires updating OS and hardware, DCTCP needs ECN-
enabled switches to achieve congestion control. Similar to
LTTP, ICTCP only needs to update OS on end hosts, but it
cannot ensure good performance when the number of servers
is large ([8] shows that ICTCP experiences timeout in up
to 6% of all experiments). Only LTTP and FQCN/AF-QCN
can maintain good performance under different conditions,
while FQCN/AF-QCN also needs to update both the end hosts’
hardware and switches.

VII. CONCLUSION

TCP Incast in data center networks causes goodput collapse.
Existing approaches either require updating the OS/hardware,
or cannot fundamentally solve the problem when the number
of servers is large enough. In this paper we design LTTP, a
novel transport protocol for many-to-one communications in
data center networks. LTTP improves the LT code for data
transmission from servers to the client, and adopts TFRC
to control the traffic sending rates at servers. Though LTTP
bears bandwidth overhead due to the data redundancy in
coding, it does not experience goodput degradation with the

growth of the number of servers. NS-2 based simulations
show that LTTP can effectively avoid goodput collapse and
significantly outperforms DCTCP when the number of servers
is large. Simulation results also demonstrate that LTTP has
good fairness under different settings.

ACKNOWLEDGMENTS

The work was supported by the National Basic Research
Program of China (973 program) under Grant 2014CB347800,
2012CB315803, the National High-tech R&D Program of
China (863 program) under Grant 2013AA013303, and
the Natural Science Foundation of China under Grant
No.61170291, No.61133006, No.61161140454.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
Proc. ACM SIGCOMM 2010, New York, NY, USA, 2010, pp. 63-74.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” in Proc. OSDI’04, Berkeley, CA, USA, 2004.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proc. SOSP ’03, New York, NY, USA, 2003, pp. 29-43.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM 2008, New York,
NY, USA, 2008, pp. 63-74.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in Proc. ACM SIGCOMM 2009, New York, NY,
USA, 2009, pp. 51-62.

[6] D. Nagle, D. Serenyi, and A. Matthews, “The panasas ActiveScale
storage cluster: Delivering scalable high bandwidth storage,” in Proc.
2004 ACM/IEEE conference on Supercomputing, Washington, DC,
USA, 2004, pp. 53-62.

[7] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-
grained TCP retransmissions for datacenter communication,” in Proc.
SIGCOMM 09, 2009, pp. 303-314.

[8] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: incast congestion
control for TCP in data center networks,” in Proc. Co-NEXT ’10, New
York, NY, USA, 2010.

[9] Z. Yan and N. Ansari, “On mitigating tcp incast in data center networks,”
in Proc. IEEE INFOCOM 2011, Apr. 2011, pp. 51-55.

[10] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar, “Af-
gcn: Approximate fairness with quantized congestion notification for
multi-tenanted data centers,” in IEEE 18th Annual Symposium on High
Performance Interconnects (HOTI), 2010, pp. 58-65.

[11] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understand-
ing TCP incast throughput collapse in datacenter networks,” in Proc.
WREN ’09, New York, NY, USA, 2009, pp. 73-82.

[12] M. Luby, “LT codes,” in Proc. 43rd Symposium on Foundations of
Computer Science, 2002, pp. 271 — 280.

[13] A. J. McAuley, “Reliable broadband communication using a burst

erasure correcting code,” in Proc. SIGCOMM 90, 1990, pp. 297-306.

S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based

congestion control for unicast applications,” in Proc. SIGCOMM 00,

New York, NY, USA, 2000, pp. 43-56.

[15] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” in Proc. ACM
SIGCOMM 98, New York, NY, USA, 1998, pp. 56-67.

[16] I. Reed and G. Solomon, ‘“Polynomial Codes Over Certain Finite Fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300-304, 1960.

[17] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551-2567, 2006.

[18] P. Cataldi, M. Shatarski, M. Grangetto, and E. Magli, “Implementation
and Performance Evaluation of LT and Raptor Codes for Multimedia
Applications,” in Intelligent Information Hiding and Multimedia Signal
Processing, IIH-MSP ’06, 2006, pp. 263-266.

[19] L. Lpez, A. Fernndez, and V. Cholvi, “A game theoretic comparison
of TCP and digital fountain based protocols,” Comput. Netw., vol. 51,
no. 12, pp. 3413-3426, 2007.

[14]

64

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly
congestion control,” IEEE Network, vol. 15, no. 3, pp. 28 =37, 2001.
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp
throughput: a simple model and its empirical validation,” in Proc. ACM
SIGCOMM 98, New York, NY, USA, 1998, pp. 303-314.

S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly
Rate Control (TFRC): Protocol Specification.” [Online]. Available:
http://www.ietf.org/rfc/rfc5348.txt

The Network Simulator - NS 2. [Online]. Available: http://isi.edu/
nsnam/ns/

Arithmetic coding. [Online]. Available: http://en.wikipedia.org/
wiki/Arithmetic_Coding

DCTCP implementation for ns-2.35. [Online]. Available: http://www.
stanford.edu/~alizade/Site/DCTCP_files/dctcp-ns2-revl.0.tar.gz

J. Zhang, F. Ren, and C. Lin, “Modeling and understanding TCP incast
in data center networks,” in Proc. IEEE INFOCOM 2011, Apr. 2011,
pp. 1377 —1385.

IEEE 802.1Qau. [Online]. Available: http://www.ieee802.org/1/pages/
802.1au.html

J. Changlin, L. Dan, X. Mingwei, and Z. Kai, “A coding-based approach
to mitigate TCP Incast in data center networks,” in Proc. the ICDCS
Workshop on data center performance, 2012.

Changlin Jiang received the B.S. and M.S. degrees
from the Institute of Communication Engineering,
PLA University of Science and Techology in 2001
and 2004 respectively. Now, he is a Ph.D. candidate
in the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China. His
research interests include Internet architecture, data
center network, network routing.

Dan Li received the M.E. degree and Ph.D from
Tsinghua University in 2005 and 2007 respectively,
both in computer science. Before that, he spent four
undergraduate years in Beijing Normal University
and got a B.S. degree in 2003, also in computer
science. He joined Microsoft Research Asia in Jan
2008, where he worked as an associate researcher in
Wireless and Networking Group until Feb 2010. He
joined the faculty of Tsinghua University in Mar
2010, where he is now an Associate Professor in
Computer Science Department. His research inter-

ests include Internet architecture and protocol design, data center network,
software defined networking.

Mingwei Xu received the B.S. degree in 1994 and
Ph.D. degree in 1998 both from the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. He is currently a professor in
Tsinghua University. His research interests include
computer network architecture, Internet protocol and
routing, high-speed router architecture and green
networking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

