An Extension to Concurrent TTCN"

Mingwei Xu and Jianping Wu

Department of Computer Science, Tsinghua University, Beijing, 100084, China

Email: xmw@csnetl.cs.tsinghua.edu.cn and jianping@cernet.edu.cn

Abstract

This paper proposes an extension to the concurrent TTCN
to meet the needs of protocol performance testing. The
operational semantics of the extended concurrent TTCN
are defined in terms of input-output labeled transition
system. Based on the extended concurrent TTCN, the
architecture of protocol performance test system is
designed, and an example of test cases about throughput
is given.

Keywords:

Protocol performance testing, extended concurrent TTCN,
FDT, IOLTS

1. INTRODUCTION

The descriptive and formal specification of the behavior of
reactive information processing system is of high
relevance in many technical applications. For these
systems often a complex behavior is required which
includes a close co-operation between the system and its
environment {1]. One of the typical application areas is
protocol testing, which is an important means to ensure
the interconnectivity and interoperability between protocol
products from different vendors. Current test activities for
protocols can be classified into three classes according to
their test purpose: conformance testing, interoperability
testing and performance testing [2]. Conformance testing
and interoperability testing are functional test.
Performance testing, however, is different from the above
two. Its purpose is to test the characteristic parameters of
protocol implementations, such as packet transfer delay
and throughput, so as to evaluate the efficiency of protocol
implementations.

How to describe protocol performance testing? Protocol
performance testing is a complex test activity, needing
several test components to coordinate and run test cases in
parallel. Verbal descriptions tend to be lengthy,

incomplete, to contain phrase that may be misinterpreted,
and to be not well structured. Moreover, they do not
follow any description standards. Therefore formal
description technique (FDT) is a better way to describe
protocol performance testing.

The concurrent TTCN, recommended by ISO to describe
protocol abstract test suite, allows more than one active
test components to participate in the execution of a test
case. All test components run in parallel and coordinate
their behavior by exchanging coordination messages. The
advantage of the concurrent TTCN is that the description
of test cases for complex test environment becomes easier

[3].

The Concurrent TTCN, however, can not satisfy all needs
of protocol performance testing, in which it is necessary to
obtain the accurate time when a test event just starts or
stops. So the sequential operation of a test event and
reading time can not be interrupted by other processes.
Moreover, the traffic operation and timer operation should
be extended in the concurrent TTCN.

The aim of this paper is to discuss an extension to the
concurrent TTCN to meet the needs of protocol
performance testing. We formally define operational
semantics for the extended concurrent TTCN in terms of
Input-Output Labeled Transition System (IOLTS).
Moreover, we describe a protocol performance test system
based on the extended concurrent TTCN, and give an
example of test cases written in the extended concurrent
TTCN.

The remainder of the paper proceeds as follows. Section 2
summaries the major features of the concurrent TTCN,
and extends it to meet the needs of protocol performance
testing. Section 3 formally defines the operational
semantics of the extended concurrent TTCN. In section 4,
we describe the design of a protocol performance test
system based on the extended concurrent TTCN and give
an example of test cases about throughput. Finally, we
draw some conclusions.

* This research is supported by National Natural Science Foundation of China under Grant No. 69473011.

0-7803-4383-2/98/$10.00 © 1998 |IEEE. 447

2. EXTENDED CONCURRENT TTCN

This section gives a short introduction to the concurrent
TTCN, and then extends the concurrent TTCN to meet the
needs of protocol performance testing. Also, a conceptual
model of a protocol performance test system is elaborated,
whose semantics representation is discussed in section 3.

2.1 Concurrent TTCN

The Tree and Tabular Combined Notation (TTCN) [4] is
recommended by ISO to describe abstract test suite. The
concurrent TTCN is an extension of TTCN. The concern
of TTCN is a single test component executing a test case.
The concurrent TTCN, however, allows the test system to
execute a test case by several test components (TCs)
running in parallel. A conceptual model of test
components is depicted in Figure 2.1. A tester consists of
exactly one main test component (MTC) and any number
of parallel test components (PTCs). TCs are linked by
coordination points (CPs) capable to convey coordination
messages (CMs). Communication of TCs with the
environment, such as the (N-1) service provider or the
implementation under test (IUT), takes place at points of
control and observation (PCOs).

Cp PCO
—f PTC e
A CP
CpP v PCO
PTC -—p
MTC $or
p
cp 3 PCO
PTC
PCO
Figure 2.1 Conceptual model of test components

Execution of a test case starts with the execution of MTC.
It is the concern of MTC to set up all PTCs, to manage all
PCOs and CPs to be connected to, and to compute the
final verdict. PTCs can be created by MTC on demand. A
‘create’ operation associates a PTC with a behavior tree.
The newly created PTC starts execution of its assigned
behavior tree concurrently with MTC. MTC may
explicitly terminate a PTC by executing a ‘terminate’
operation.

2.2 Extentions to Concurrent TTCN

The concurrent TTCN allows the test system to execute a
test case by several test components running in parallel.
This is important to protocol performance testing. There

448

are, however, still some requirements in protocol
performance testing, e.g. atomic operation, traffic
operation and some timer operation, cannot be provided
by the concurrent TTCN. According to the needs of
protocol performance testing, we extend the concurrent
TTCN as follows.

2.2.1 Atomic Operation

In protocol performance testing, some test cases about
time parameters, such as delay, are indispensable. We can
use TTCN to specify the test case, for example

la
readtimer (t1)
7b
readtimer (t2)
(Delay =12 - t1)

There are some problems in the above specification. Since
the UNIX we use is a multi-process operating system, the
sequential composition of /a and readtimer (t1) (?b and
readtimer (12)) may be interrupted by other processes.
There may be time gap between /a and readtimer (t1) (?b
and readtimer (12)), and the time gap is non-deterministic.
Therefore the calculated delay ‘Delay := t2 - t1’ is not
accurate. To solve the problems, atomic operation is
defined.

Definition 2.1 Atomic operation can be denoted as

A1=>A2:> b DAn

where A, A,, **, A, are events and it is
o successfully completed if A;,, happens immediately

after the successful completion of A;, (i =1, 2, ***, n-
1);

o successfully matched in a TTCN behavior tree if the
first event A, is successfully matched.

2.2.2 Traffic Operation

To test a network product’s performance under more
realistic assumptions, traffic generator and traffic monitor
are added in the test system. Traffic generator generates a
special kind of data flow in accordance with the
requirement of test cases, and sends it to IUT through
PCO. Traffic monitor analyzes the data flow it receives
from IUT, and records the result of the analysis. We
define two traffic operators, generate and monitor, so that
we can describe the behavior of traffic generator and
traffic monitor distinctly.

Definition 2.2 The operation of generating and
monitoring traffic can be defined as:

generate (pcoid, trid(a,, ***, a,)), and
monitor (pcoid, trid(a;, -, a)
pcoid is the identifier of the PCO through which the traffic

is sent or monitored. trid is the traffic source model
identifier, and qg; is the parameter of the traffic source
model.

2.2.3 Timer Operation

Four timer operators have been defined in TTCN: sfart,
cancel, readtimer and timeout, but it is still needed to
extend timer operation to meet the needs of protocol
performance testing.

When test components are located in different systems,
timers in different systems need to be synchronized for
accurately testing time parameters. One of timers is
selected as reference timer so that other timers can be
calibrated by synchronizing operation.

Definition 2.3 The synchronizing timer operation is
defined as:

synctimer (testerid)
testerid is the identifier of a tester. This operation
synchronizes the timer of a remote tester with the timer of
the tester executing this command.

2.3 Conceptual Model of A Protocol Performance
Test System

Figure 2.2 gives a conceptual model of a protocol
performance test system. The test system defines the
highest level of abstraction, which is composed of a test
module, a timer and PCOs. The test module consists of all
test components, traffic generator and traffic monitor,
which are interconnected by coordination points. A test
component is a virtual TTCN machine that can perform
the evaluation of test behavior expressions.

Test
g Test Test
ystem Module| Component GTrafﬁc
i CP enerator
Test
Component Traffic
i CP Monitor

lCP

Test
Component

Figure 2.2 Conceptual model of a protocol performance
test system

3. OPERATIONAL SEMANTICS OF THE
EXTENDED CONCURRENT TTCN

The semantics of descriptive formalism have to be defined
by clear mathematical means that allows an unambiguous

449

meaning of the construct [1]. This section describes the
definition of the operational semantics of the extended
concurrent TTCN in terms of input-output labeled
transition system.

3.1 Preliminaries

Labeled Transition System (LTS) is a basic mathematical
tool for modeling the behavior of systems or processes. It
is widely used in protocol specification, implementation,
and test. It also serves as semantic model for various
formal specification languages, e.g. LOTOS, CSP and
CCS. First we introduce the basic definition of LTS.

Definition 3.1 A Labeled Transition System (LTS) is a

4-tuple <S, L, T, s¢>, where:

1) S is a countable, non-empty set of states;

2) L is a countable set of observable events;

3) T SX@L v {1})XS s a set of transitions, where 1
denotes an unobservable event. Element (s, %, s’) in T

can also be written as: s———> s', where s, s” € S, u €
Lu{t};
4) s, € S is the initial state.

We use LTSs(L) to denote the set of all possible labeled
transition systems over L. Trace is a common concept in
LTS, definition 3.2 gives out its definition and some
useful notation.

Definition 3.2 Let<S, L, T, s,>be a LTS, L’= Lu{t}
contains all observable and unobservable events, s, s°, s;,
S35 v 5 Sp» Sui1 € S, Wy, 0, €L, let 6 =u;-u,-...-u, be a
sequence of labels in L’, ¢* denotes concatenation, then c
is said to be a trace over L’. L’* represents the set of all
possible traces over L’.

We further have the following notations:

ul uz2 Un

o if s=s) >Sn+1=§",

c
then s—— ',
. T* u T* .
if s=si—so—s5———>u=49¢,
u . .
then s = ', ue L, t* is the concatenation of zero or

more T.
U U U, o

if s=s1=>=>---=>su+1=5,then s=¢'.

) , c c
if 3s’, s——s', thens—— .
c c

if3s°, s= &', thens =.

In LTS model, events in L are treated in the same way no
matter what they mean. This is not the case when we want
to describe the external behavior of a system
communicating with others. In this case, we must

distinguish input events from output events. In order to
model this kind of system, a kind of LTS called input-
output labeled transition system is introduced.

Definition 3.3 An Input-Output Labeled Transition
System (IOLTS) p is a labeled transition system in which
the set of events L is partitioned into input events Li and
output events Lo, where elements in Li are events
accepted by this LTS from its environment, and elements
in Lo are events sent to its environment by this LTS.
IOLTS p satisfies:
peLTSs(L),L=LiuLoandLinLo=(

IOLTSs(Li, Lo) represents the set of all possible input-
output labeled transition systems over input events Li and
output events Lo. JOLTSs(Li, Lo) ¢ LTSs(Li\ULo)

3.2 Algebraic Form of the Extended Concurrent
TTCN

A definition of the operational semantics of the extended
concurrent TTCN is the basis of designing a protocol
performance test system based on the extended concurrent
TTCN. In the test case specified by the extended
concurrent TTCN, the behavior of each test component is
expressed with a behavior tree in the test case. Behavior
tree is a tree-like presentation of the temporal relations
between test events. In order to get formal definition of the
semantics, we give the Test Behavior Expression (TBE)
defined below to express the behavior of test components
in algebraic form.

Definition 3.4 The syntax of a Test Behavior Expression
(TBE) is defined as follows:

B =, stop [exit | id7a;B | id!a;B | B[]B |[q]; B | (Ii=val);
B | B>>B | B = B start (tid val); B | cancel (tid);
B|timeout (tid); B | readtimer(t); B |
synctimer (testerid); B | create (tcid, tpid[pc,,*,
pc,l(as, **,a,)); B | terminate (tcid); B | generate
(peoid, trid (a;, ***, a,)); B | monitor (pcoid,
trid (a,, ***, a,)); B

3.3 Operational Semantics of the Extended
Concurrent TTCN

The operational semantics of the extended concurrent
TTCN is defined in terms of hierarchical model according
to the structure of the protocol performance test system
conceptunal model given in Figure 2.2.

3.3.1 Operational Semantics of Test Component

A test component (TC) is a virtual machine that can
perform the evaluation of test behavior expressions. The
state of a TC can be represented by a triplet (ctrl, sto, env),
in which

1) Control part: ‘ctrl is a TBE specifying the behavior of

450

this TC, ctrl = Texpr(f) € TBEs, ¢ denotes test case;

2) Storage part: sto € { (i,v) | (i,v) € STO = IDENT X
VALUE }, where IDENT is the set of identifiers, and
VALUE is the set of values. Elements in STO are pairs
of identifier and its corresponding value, which
represent variables or constants in test suite and their
values;

3) Environment part: env € { (qid,i,0) | (qid,i,0) € ENV =
ID X {Input*} X {Output*}}. The interaction of a TC
and its environment is realized through many
interacting points. Each interacting point is described
by an identifier and a pair of input and output queues.
ID = {pcoid} U {cpid} v {TIMER}, where pcoid
represents point of control and observation, cpid
denotes coordination point, TIMER is the queue name
for timer. Elements in each queue are PDUs, ASPs or
CMs. Input, Output € {PDUs} U {ASPs} U {CMs}.

Definition 3.5 The operational semantics of a test
component is defined by the input-output labeled
transition system as <Syc, Lyc, Trc, 8o 1cy>, where

1) Sie= ({ (ctrl, sto, env) } U {Drc}) € TBEsXSTOX
ENV, contains all possible states of the TC, O
denotes the undefined TC. A TC becomes undefined
before it is initiated or after it has stopped execution ;

2) L’ = Li v Lo U CREATE U TERMINATE v
GENERATE U MONITOR v {t}, is the set of all
possible events. Li is the set of events input (msg),
while Lo is the set of events output (pcid, msg) to PCO
or CP identified by pcid for every message msg.
CREATE is the set of events create, and TERMINATE
is the set of events terminate. GENERATE is the set of
events generate, and MONITOR is the set of events
monitor. Finally, T is an internal event;

3) o c) = (By, sto,, env,), B=Texpr(f), sto,, env, are the
initial states of storage part and environment part
respectively;

4) Tre © S XL’ X Sy, contains transitions satisfying
the inference rules defined in Appendix.

3.3.2 Operational Semantics of Traffic Generator and
Traffic Monitor

A state of a traffic generator (TrG) is an element of the set
St = {(p, sto, env) | p € TrGProc, sto € STO, env
ENV} U {Or6}

TrGProc is the set of states of the traffic generating
process. STO = {(i, v) | i € IDENT, v ¢ VALUE }, ENV
= {(qid,i,0) | qid € ID, i e {Input*}, o e {Output*}}, Tr,s
is the undefined traffic generator.

Definition 3.6 The semantics of a traffic generator is
defined by input-output labeled transition system as <Sy,g,

L1s Tres Sore6y>> Where

1) St6= ({(p, sto, env)} U {Dr}) < TrGProc X STO X
ENV, contains all possible states of a traffic generator;

2) L’1¢ = Li U Lo u GENERATE U {1}, is the set of all
possible events;

3) 8o) = (P> Stoy, €nvy) is the initial state of a traffic
generator;

4) Tr6 € St X L’ 16 X Stig, contains transitions satisfying
the following inference rules:

(p, sto, env) —2uPu(peidmse) oy gt env'),
if env'= env[(pcid, i,0)/ (pcid, i,0 - msg)];

(p, sto, env) —PuIsE) (1 sto, env'),

if env' = env[(pcid,a-i,0)/ (pcid, i, 0)];

e —Eenerte(peoid id@1a0) (554 stoo, envo) .

The operational semantics of a traffic monitor (TrM) is
similar to that of a traffic generator.

Definition 3.7 The semantics of a traffic monitor is

defined by input-output labeled transition system as <Sry,

Ltavs Tromts So romy™s where

1) St=({(p, sto, env)} U {Dp\}) € TtMProc X STO X
ENV, contains all possible states of the traffic monitor,
D1 18 the undefined traffic monitor;

2) L’ = Li U Lo U MONITOR v {t}, is the set of all
possible events;

3) s (T,M)'= (p, stoy, envy) is the initial state of a traffic
monitor;

4) Trmw S Stm X L’ X S, contains transitions
satisfying the following inference rules:

o (p,sto,env) —upu(pidmse) (1 sto env'),
if env' = env[(pcid, i,0)/ (pcid, i,0-msg)];

input{msg)

e (p,sto,env) (p', sto,env'),

if env'= env[(pcid,a-i,0)/(pcid,i,0)];
Jtm
3.3.3 Operational Semantics of PCOs and CPs

As stated before, PCOs and CPs are behaviorally
equivalent, so it allows us to concentrate on the
operational semantics of PCOs. A PCO is modeled by two
queues, messages in which are managed by a PCO
process.

monitor (peoid, trid(a1,~,2q))
[) ”\

prid, stoo, envo) .

Definition 3.8 The semantics of a PCO process can be

given by input-output labeled transition system as <Spco,

Lecos Tecos So peoy™ Where

1) Spco= {(p, i, 0) | p € PCOProc, i, 0 € Msg*} contains
all possible states of a PCO process. i, o are the
sequences of messages in the input or output queue
respectively. Msg = {PDUs} U{ASPs}.

451

2) L’pco=Liu Lo U {1} is the set of all possible events;
3) $o ooy = (P, D, D), O represents that the input and
output queues are empty at the initial state;

4) Toco S Spoo X L’peo X Speg, contains transitions
satisfying the following inference rules:

input (msg)

(pa i’ 0) ——)(p’ i msg, 0) s

e (p,i,msg-0) ——Lm’”—“%)(p, i,0).

To derive the operational semantics of a CP process, it is
sufficient to substitute CP for PCO in all definition, where
Msg is the set of all coordination messages (CMs).

3.3.4 Operational Semantics of Test Module

A test module (TM) can be abstracted from the behavior
of test components, traffic generators, traffic monitors and
coordination points defined in the test module. The state
of a test module is determined by the states of all TCs,
TrGs, TrMs and all CP processes.

Stm = Sper X7 X Sqem X Sqegy X 000 X STer X Stemy X #00 X
STquX Scp1 X +** X Scpy

According to section 3.3.3

Scr= {(p, 1, 0) | p € CPProc, i, 0 € Msg*}, Msg = {CMs}

All TCs are initialized with the undefined TC &, with

the exception of MTC. All TrGs and TrMs are initialized

with the undefined TrG &, and undefined TrM £,
respectively. All CPs are initialized with empty queues. So

the initial state of TM is

So My T (so (MTC)» Drct s Drems Do s QTer,
Oravrs *** QTqu, Socp1)» "5 So (CPn))

For convenience, we denote s, ny as

Somy = (so rcy Socrry "> So (CPn))

The set of events a test module can perform is the set
L’'my=LivuLou {1}

Definition 3.9 The semantics of a test module is defined

by input-output labeled transition system as <Spy, Ly,

Tms 8o rmy>, Where

1) Stm = Sqer X =" X Sy X Sqigy X oo X STerX St X 00
X STqux Scpr X *** X Scpy

2) L’y =Liu Lo v {1} is the set of all possible events;

3) soamy = (So urcy Socpiy “""» So(ceny) 1S the initial state of
aTM;

4) Ty € St X L7 X Sy, contains transitions satisfying
the inference rules defined in Appendix.

3.3.5 Operational Semantics of Test System

A test system (TS) combines the behavior of a test module
and all PCO processes.

Definition 3.10 The semantics of a test system is

defined by input-output labeled transition system as <Sr,

Lrs, Trs, So sy where _

1) Sys = S X Spcor X *** X Spcon

2) L= Li ULo U {1}, is the set of all possible events;

3) So (TS)= (SO (TM)» So (PCOL) " So (PCOn))s is the initial state of
a test system;

4) T © SpsXL’15X Sy, contains transitions satisfying
the following inference rules:

Communication with the environment:

o ts—RU(mE) o ¢o in TS peoi —MmE) 4 heo's;

o ts—URMSE) 4o in TS pooi —MRHmE) 5 peo's;
Communication between test module and PCOs:

e ts——ts,in TS

output{msg) tm'
b

tm input(msg)
_—>

pcoi ——=223 pco'i ;

o ts——ts',inTS

input(msg)

output(msg)
tm ———F">tm',

peoi ———"21—pco'i.
4, PROTOCOL PERFORMANCE TESTING

In this section, the architecture design of a protocol
performance test system based on the extended concurrent
TTCN is described, and an example of test cases written in
the extended concurrent TTCN is given.

4.1 Architecture Design of Protocol Performance
Test System

Figure 4.1 gives the architecture of a protocol performance
test system based on the extended concurrent TTCN. A
protocol performance test system consists of several test
components, traffic generators and traffic monitors, a
timer and a database of test context and evaluation tree.

MTC J
Test
Context & Ccp
Evaluation CP
PTC
v
& -G DD
PCO PCO PCO PCO

Figure 4.1 Architecture of a protocol
performance test system

Test components communicate with environment or with
each other through interface queues and perform the
evaluation of a TBE. The evaluation process is based on
the operational semantics of the extended concurrent
TTCN. Only one of the TCs is MTC which coordinates
the actions of each TC. Traffic generators generate special
kinds of traffic according to the requirement of TCs.
Traffic monitors analyze the traffic received from PCOs
and record the result of the analysis. Test context is the
realization of the storage part of TCs, and evaluation tree
is the implementation of the control part.

4.2 An Example of Test Cases

Protocol Integrated Test System (PITS) designed by
Tsinghua University is an integrated tester, which can
support protocol conformance testing, interoperability
testing and performance testing. Now, PITS is used to test
the performance of routers. The protocol performance test
suite of routers is described in the extended concurrent
TTCN.

Nr |Label | Behavior Description
create (PTC, B)
(dltime := DELAY)
start TM_01
L1 readtimer TM_01(t1) = generate (MT, CONT

(TOTAL, dltime, data)) = readtimer TM_01(t2)
M ? RECV_PDU(sock,recv,len,name,size)
[recv < TOTAL]
(dltime := delay (dltime))
—>L1
(p := TOTAL * PACK_SIZE * 8 / (2 - t1))
terminate (PTC)

Table 4.1 Dynamic part of a test case about throughput

Nr | Label | Behavior Description

L1 | monitor (PT, CONT (TOTAL, data, len))
P t SEND_PDU(sock,recv,len,name,size)
—>11

Table 4.2 Dynamic part of PTC

The dynamic part of a test case, whose purpose is to test
the throughput of routers, is depicted in table 4.1. After
creating a PTC whose behavior is B, MTC sends data flow
with constant bit rate to PTC through the router under test.
MTC adjusts bit rate until PTC can receive all packets.
PTC’s behavior B is described in table 4.2, and the test
result of one port of Cisco 4700 with different length
packets is depicted in figure 4.2.

10 g

Kpps

(== \S B - e I]

64 128 256 512 1024 1500 bytes

Figure 4.2 Throughput of one port of Cisco 4700

5. CONCLUSIONS

In this paper, we extended the concurrent TTCN to meet
the needs of protocol performance testing, and then
defined the operational semantics of the extended
concurrent TTCN in terms of input-output labeled
transition system. A practical architecture design of a
protocol performance test system was proposed, and an
example of test cases was given.

REFERENCES

1. M. Broy. Formal description techniques - how formal
and descriptive are they? In: Proceedings of
FORTE/PSTV’96, Kaiserslautern, Germany, 1996: 95-
110.

2. Ruibing Hao and Jianping Wu. Toward formal TTCN-
based test execution. In: Proceedings of IEEE
INFOCOM’97, Japan, 1997.

3. Thomas Walter and Bernhard Plattner. An operational
semantics for concurrent TTCN. In: Proceedings of
IWPTS’92, Montreal, Canada, 1992: 101-114.

4. ISO. Conformance testing methodology and
framework Part 3 - The Tree and Tabular Combined
Notation, ISO, November 1991.

5. TW.Kim, K.HLee and T.W.Jeong. Field trial and
quality test of ATM switching system in Korea. In:
Proceedings of IWPTS’96, Darmstadt, Germany, 1996:
225-236.

6. CHlee and SH.Chiu. Performance testing of
distributed systems using TTCN. Dissertation, Beijing,
1996.

7. Jan Tretmans. Testing Labeled Transition Systems
with Inputs and Outputs. In: Proceedings of IWPTS’95,
Evry, France, 1995: 461-476.

453

Appendix.

1. Inference Rules of TC’s Operational Semantics

e (stop, sto, env) means no transition can take place;

e (id ?7a; B, sto,env) i—)(B, sto,env{(id,a-i,0)/ (id,i,0)])
where env[X/Y] =4 (env -{X}PDU{Y};

o (id!a;B,sto,env) —2—(B, sto,env[(id, i, 0) /(id, i,0-a)])
¢ (B, [1B,, sto, env) —£—(B1',sto',env'),

if (By,sto,env)—E—(B1',sto',env'), peLu{t};

(B, [1B,, sto, env) —£—(B2',sto',env'),

if (B2,sto,env)—t—(B2',sto',env'), peLu{t};
« ([q]; B, sto, env) ——>(B, sto, env), if q = TRUE;

(Iq); B, sto,env)——1-—>(stop,sto,env),if q=FALSE;

s ([:= v]; B, sto, env) ——»(B, sto[(I, x)/ (I, v)], env),
where stof(1, x) / (L, v)] = (sto - {(I, x)})U{(1, v)};

o (exit >> Bz,sto,env) ——5—>(B2, sto,env),
(B1>> Bz,sto,env) ——(B1'>> B2,sto',env'),
if(B1, sto, env) —=—(BI',sto' ,env'), p € LU {t};

o (Bi= B2;B3,st0,env)~——u——)(B3, sto',env'),
if (B1= Bz,sto,env)~—”—>(exit,sto‘,env');

T
o (start (tid val); B, sto,env) ——(B, sto,env'),
if env'= env[(timer, i, 0)/ (timer, (tid, val)- i, 0)];

o (cancel (tid); B, sto, env) ——T—>(B, sto,env'),
if env'= env{(timer, i, 0)/ (timer, (tid,0) i, 0)];

T
o (timeout (tid); B, sto, env)——>(B, sto,env'), if
env'= env{(timer, i,01-(tid,0) - 02) / (timer, i, 01- 02)];

. . T

o (synctimer (testerid); B, sto, env)——>(B, sto, env'),
if env'= env[(timer,i,0)/ (timer, i, o- (testerid, now))};
where now is the current time.

o (readtimer (t); B, sto, env) —T——>(B, sto',env),
where sto'= sto((t, x) / (t, now));
o (create(teid, tpid[pci,--J(a1, --)); B, sto, env)mrc

T
—>(B, sto', env')M1C, and
e create(tcid, tpid[pc1,~](a1,L))

»(Btpid, 510, &)1cid;

o (ter min ate(tcid); B, sto, env)mrc —l—a» (B, sto',env')MTC,
and (B,sto, env)wid lerminate(teld) o orre.

e (generate(pcoid, trid(ai, --)); B,sto,env) LN (B,sto',env'),

(monitor(pcoid, trid(ai, - -)); B,sto,env) BN (BV, sto',env').

2. Inference Rules of TM’s Operational Semantics

Communication between TC and PCO:
° th—) tm', in TM tci

e tm output(pcoid,msg) ytm', in TM

output(pcoid, ms;
tei tput(p)

input(msg) tc'i:
—-——.—_—.) .

>tc'i;

Communication between TC and CP:

. tm——T—)tm',inTM

output(cpid,msg) input(msg)

tei tc'i, cpji——————>Cp'i;
o tm——>tm',in TM

tci input(msg) tc'i, cpj output(msg) cp'j;
Creation of a test component:

L) tm——r_‘) tm' 3 in TM
mtc create(tcid,tpid[pcx,..-,pCp](al,L,aq)L) mtc',

Orc create(tcid, tpid[pc1,,pep](al,L,aq))

¥ tCteid ;
Termination of a test component:

¢ tm—>tm',in TM

ter min ate(tcid) ter min ate(tcid)

mtc mtc', tCtcid a1C;
Generate traffic:
o tm——tm',in TM
tc generate(pcoid, trid(a1,-,aq)) st)
O generate(pcoid, trid(a1,,aq)) >trg;
Monitor traffic:
e tm——tm',in TM
tc monitor(pcoid, trid (a1, ag)) >tc'
oM monitor (peoid, trid (a1, -,2q)) > trm;

454

