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Abstract 
This paper proposes an extension to the concurrent TTCN 
to meet the needs of protocol performance testing. The 
operational semantics of the extended concurrent TTCN 
are defined in terms of input-output labeled transition 
system. Based on the extended concurrent TTCN, the 
architecture of protocol performance test system is 
designed, and an example of test cases about throughput 
is given. 
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1. INTRODUCTION 

The descriptive and formal specification of the behavior of 
reactive information processing system is of high 
relevance in many technical applications. For these 
systems often a complex behavior is required which 
includes a close co-operation between the system and its 
environment [I]. One of the typical application areas is 
protocol testing, which is an important means to ensure 
the interconnectivity and interoperability between protocol 
products from different vendors. Current test activities for 
protocols can be classified into three classes according to 
their test purpose: conformance testing, interoperability 
testing and performance testing [2]. Conformance testing 
and interoperability testing are functional test. 
Performance testing, however, is different from the above 
two. Its purpose is to test the characteristic parameters of 
protocol implementations, such as packet transfer delay 
and throughput, so as to evaluate the efficiency of protocol 
implementations. 

How to describe protocol performance testing? Protocol 
performance testing is a complex test activity, needing 
several test components to coordinate and run test cases in 
parallel. Verbal descriptions tend to be lengthy, 

incomplete, to contain phrase that may be misinterpreted, 
and to be not well structured. Moreover, they do not 
follow any description standards. Therefore formal 
description technique (FDT) is a better way to describe 
protocol performance testing. 

The concurrent TTCN, recommended by IS0  to describe 
protocol abstract test suite, allows mlore than one active 
test components to participate in the execution of a test 
case. All test components run in parallel and coordinate 
their behavior by exchanging coordination messages. The 
advantage of the concurrent TTCN is that the description 
of test cases for complex test environment becomes easier 

The Concurrent TTCN, however, can not satisfy all needs 
of protocol performance testing, in which it is necessary to 
obtain the accurate time when a test event just starts or 
stops. So the sequential operation of a test event and 
reading time can not be interrupted by other processes. 
Moreover, the traffic operation and timer operation should 
be extended in the concurrent TTCN. 

The aim of this paper is to discuss an extension to the 
concurrent TTCN to meet the needs of protocol 
performance testing. We formally define operational 
semantics for the extended concurrent TTCN in terms of 
Input-Output Labeled Transition System (IOLTS). 
Moreover, we describe a protocol performance test system 
based on the extended concurrent TTCN, and give an 
example of test cases written in the extended concurrent 
TTCN. 

The remainder of the paper proceeds as follows. Section 2 
summaries the major features of the concurrent TTCN, 
and extends it to meet the needs of protocol performance 
testing. Section 3 formally defines the operational 
semantics of the extended concurrent TTCN. In section 4, 
we describe the design of a protoc,ol performance test 
system based on the extended concurrent TTCN and give 
an example of test cases about throughput. Finally, we 
draw some conclusions. 

~31. 

* This research is supported by National Natural Science Foundation of China under Grant No. 6947301 1. 

0-7803-4383-2/98/$10.00 0 1998 IEEE. 441 



2. EXTENDED CONCURRENT TTCN 

This section gives a short introduction to the concurrent 
TTCN, and then extends the concurrent TTCN to meet the 
needs of protocol performance testing. Also, a conceptual 
model of a protocol performance test system is elaborated, 
whose semantics representation is discussed in section 3. 

2.1 Concurrent TTCN 
The Tree and Tabular Combined Notation (TTCN) [4] is 
recommended by IS0  to describe abstract test suite. The 
concurrent TTCN is an extension of TTCN. The concern 
of TTCN is a single test component executing a test case. 
The concurrent TTCN, however, allows the test system to 
execute a test case by several test components (TCs) 
running in parallel. A conceptual model of test 
components is depicted in Figure 2.1. A tester consists of 
exactly one main test component (MTC) and any number 
of parallel test components (PTCs). TCs are linked by 
coordination points (CPs) capable to convey coordination 
messages (CMs). Communication of TCs with the 
environment, such as the (N-1) service provider or the 
implementation under test (IUT), takes place at points of 
control and observation (PCOs). 

CP PCO : 
I C P 3 ,  PCO 

PTC 

$ CP 
... 

PCO 

k 

Figure 2.1 Conceptual model of test components 
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Execution of a test case starts with the execution of MTC. 
It is the concern of MTC to set up all PTCs, to manage all 
PCOs and CPs to be connected to, and to compute the 
final verdict. PTCs can be created by MTC on demand. A 
‘create’ operation associates a PTC with a behavior tree. 
The newly created PTC starts execution of its assigned 
behavior tree concurrently with MTC. MTC may 
explicitly terminate a PTC by executing a ‘terminate’ 
operation. 

2.2 Extentions to Concurrent TTCN 

The concurrent TTCN allows the test system to execute a 
test case by several test components running in parallel. 
This is important to protocol performance testing. There 

are, however, still some requirements in protocol 
performance testing, e.g. atomic operation, traffic 
operation and some timer operation, cannot be provided 
by the concurrent TTCN. According to the needs of 
protocol performance testing, we extend the concurrent 
TTCN as follows. 

2.2.1 Atomic Operation 

In protocol performance testing, some test cases about 
time parameters, such as delay, are indispensable. We can 
use TTCN to specify the test case, for example 

!a 
readtimer (tl) 

?b 
readtimer (t2) 

(Delay := t2 - t l )  

There are some problems in the above specification. Since 
the UNIX we use is a multi-process operating system, the 
sequential composition of !a and readtimer (tl) (?b and 
readtimer (t2)) may be interrupted by other processes. 
There may be time gap between !a and readtimer (tl) (?b 
and readtimer (t2)), and the time gap is non-deterministic. 
Therefore the calculated delay ‘Delay := t2 - t l ’  is not 
accurate. To solve the problems, atomic operation is 
defined. 

Definition 2.1 Atomic operation can be denoted as 

A I S A , ~  =A,, 

where AI, A2, e.., A,, are events and it is 
successfully completed if Ai+, happens immediately 
after the successful completion of Ai, (i = 1, 2, ..., n- 

successfully matched in a TTCN behavior tree if the 
first event AI is successfully matched. 

2.2.2 Traffic Operation 

To test a network product’s performance under more 
realistic assumptions, traffic generator and traffic monitor 
are added in the test system. Traffic generator generates a 
special kind of data flow in accordance with the 
requirement of test cases, and sends it to IUT through 
PCO. Traffic monitor analyzes the data flow it receives 
from IUT, and records the result of the analysis. We 
define two traffic operators, generate and monitor, so that 
we can describe the behavior of traffic generator and 
traffic monitor distinctly. 

Definition 2.2 The operation of generating and 
monitoring traffic can be defined as: 

1 >; 

generate (pcoid, trid(a,, -, aq)), and 
monitor (pcoid, trid(a,, - a - ,  aq)) 

pcoid is the identifier of the PCO through which the traffic 



is sent or monitored. trid is the traffic source model 
identifier, and a, is the parameter of the traffic source 
model. 

2.2.3 Timer Operation 

Four timer operators have been defined in TTCN: start, 
cancel, readtimer and timeout, but it is still needed to 
extend timer operation to meet the needs of protocol 
performance testing. 

When test components are located in different systems, 
timers in different systems need to be synchronized for 
accurately testing time parameters. One of timers is 
selected as reference timer so that other timers can be 
calibrated by synchronizing operation. 

Definition 2.3 The synchronizing timer operation is 
defined as: 

testerid is the identifier of a tester. This operation 
synchronizes the timer of a remote tester with the timer of 
the tester executing this command. 

2.3 Conceptual Model of A Protocol Performance 

Figure 2.2 gives a conceptual model of a protocol 
performance test system. The test system defines the 
highest level of abstraction, which is composed of a test 
module, a timer and PCOs. The test module consists of all 
test components, traffic generator and traffic monitor, 
which are interconnected by coordination points. A test 
component is a virtual TTCN machine that can perform 
the evaluation of test behavior expressions. 

synctimer (testerid) 

Test System 

... 

PCO 

Timer 

I Teqt I I t  

hot 

Figure 2.2 Conceptual model of a protocol performance 
test system 

3. OPERATIONAL SEMANTICS OF THE 
EXTENDED CONCURRENT TTCN 

The semantics of descriptive formalism have to be defined 
by clear mathematical means that allows an unambiguous 

meaning of the construct [ 11. This section describes the 
definition of the operational semantics of the extended 
concurrent TTCN in terms of input-output labeled 
transition system. 

3.1 Preliminaries 

Labeled Transition System (LTS) is a lbasic mathematical 
tool for modeling the behavior of systems or processes. It 
is widely used in protocol specification, implementation, 
and test. It also serves as semantic model for various 
formal specification languages, e.g. ILOTOS, CSP and 
CCS. First we introduce the basic definiition of LTS. 

Definition 3.1 A Labeled Transition System (LTS) is a 
4-tuple <S, L, T, so>, where: 
1) S is a countable, non-empty set of st,ates; 
2) L is a countable set of observable events; 
3) T c S X (L u {T}) X S is a set of transitions, where r 

denotes an unobservable event. Element (s, u, s’) in T 
can also be written as: s u \  s’ , where s, s ’ E S, u E 

L u W ;  
4) so E S is the initial state. 

We use LTSs(L) to denote the set of id1 possible labeled 
transition systems over L. Trace is a common concept in 
LTS, definition 3.2 gives out its derfinition and some 
useful notation. 

Definition 3.2 Let < S, L, T, so> be a LTS, L’= Lu{r} 
contains all observable and unobservalde events, s, s’, sly 
s2, ... , s,, s,+~ E S ,  u,,u2, ..., u,EL’, let CY =u1-u2- ...a,, be a 
sequence of labels in L’, ‘ a ’  denotes concatenation, then CY 

is said to be a trace over L’. L” reprlesents the set of all 
possible traces over L’. 

We further have the following notations: 

if s =  si 
(3 

then s--.--)s’. 
r *  U T *  if s =  si-s2+s3-s4 = s f ,  

then s 3 s’, u E L, T* is the conc,atenation of zero or 
more T. 

if s = si 3 s2 s 

U 

UI  UZ Un 0 

Sn + I = s’, then s 3 s’. 
(3 (3 

if 3s ’, s+ s’ , them+. 

if 3s’, s a s’, thens 3. 
CY CY 

In LTS model, events in L are treated in the same way no 
matter what they mean. This is not the case when we want 
to describe the external behavior of a system 
communicating with others. In this case, we must 
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distinguish input events from output events. In order to 
model this kind of system, a kind of LTS called input- 
output labeled transition system is introduced. 

Definition 3.3 An Input-Output Labeled Transition 
System (IOLTS) p is a labeled transition system in which 
the set of events L is partitioned into input events Li and 
output events Lo, where elements in Li are events 
accepted by this LTS from its environment, and elements 
in Lo are events sent to its environment by this LTS. 
IOLTS p satisfies: 

IOLTSs(Li, Lo) represents the set of all possible input- 
output labeled transition systems over input events Li and 
output events Lo. IOLTSs(Li, Lo) c LTSs(Li ULO) 

3.2 Algebraic Form of the Extended Concurrent 

A definition of the operational semantics of the extended 
concurrent TTCN is the basis of designing a protocol 
performance test system based on the extended concurrent 
TTCN. In the test case specified by the extended 
concurrent TTCN, the behavior of each test component is 
expressed with a behavior tree in the test case. Behavior 
tree is a tree-like presentation of the temporal relations 
between test events. In order to get formal definition of the 
semantics, we give the Test Behavior Expression (TBE) 
defined below to express the behavior of test components 
in algebraic form. 
Definition 3.4 The syntax of a Test Behavior Expression 
(TBE) is defined as follows: 

B =dei stop !exit I id?a;B 1 id!a;B I B[]B l[q]; B 1 (I:=val); 
B 1 B>>B 1 B 3 B I start (tid Val); B 1 cancel (tid); 
B I timeout ( tid ); B I readtimer ( t ); B 1 
synctimer (testerid); B I create (tcid, tpid[pc,;.*, 
pc,](a,,.**,a,)); B 1 terminate (tcid); B 1 generate 
( pcoid, trid (aly e.., a,)); B 1 monitor (pcoid, 
trid (al, - . e ,  a,)); B 

p E LTSs(L), L = Li u Lo and Li n Lo = 0 

TTCN 

3.3 Operational Semantics of the Extended 

The operational semantics of the extended concurrent 
TTCN is defined in terms of hierarchical model according 
to the structure of the protocol performance test system 
conceptual model given in Figure 2.2. 

3.3.1 Operational Semantics of Test Component 

A test component (TC) is a virtual machine that can 
perform the evaluation of test behavior expressions. The 
state of a TC can be represented by a triplet (ctrl, sto, env), 
in which 
1) Control part: ‘ctrl is a TBE specifying the behavior of 

Concurrent TTCN 

~ 
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this TC, ctrl= Texpr(t) E TBEs, t denotes test case; 
2) Storage part: sto E { (i,v) I (i,v) E STO = IDENTX 

VALUE }, where IDENT is the set of identifiers, and 
VALUE is the set of values. Elements in STO are pairs 
of identifier and its corresponding value, which 
represent variables or constants in test suite and their 
values; 

3) Environment part: env E { (qid,i,o) 1 (qid,i,o) E ENV = 
IDX {Input*} X {Output*}}. The interaction of a TC 
and its environment is realized through many 
interacting points. Each interacting point is described 
by an identifier and a pair of input and output queues. 
ID = (pcoid} u {cpid} u (TIMER}, where pcoid 
represents point of control and observation, cpid 
denotes coordination point, TIMER is the queue name 
for timer. Elements in each queue are PDUs, ASPs or 
CMs. Input , Output E (PDUs} u {ASPs} u {CMs}. 

Definition 3.5 The operational semantics of a test 
component is defined by the input-output labeled 
transition system as <STC, LTC, TTc, so (,+, where 
1) S,C= ({ (~ t r l ,  $to, env) } u { 0 T C } )  c TBEsX STOX 

ENVY contains all possible states of the TC, OTc 
denotes the undefined TC. A TC becomes undefined 
before it is initiated or after it has stopped execution ; 

2) L’TC = Li u Lo u CREATE u TERMINATE u 
GENERATE u MONITOR u {T}, is the set of all 
possible events. Li is the set of events input (msd, 
while Lo is the set of events output kcid, m s d  to PCO 
or CP identified by pcid for every message msg. 
CREATE is the set of events create, and T E W A T E  
is the set of events terminate. GENERATE is the set of 
events generate, and MONITOR is the set of events 
monitor. Finally, z is an internal event; 

= (Bt, sto,, env,), Bt=Texpr(t), sto,, envO are the 
initial states of storage part and environment part 
respectively; 

4) TTC E S,, X L’, X STC, contains transitions satisfying 
the inference rules defined in Appendix. 

3.3.2 Operational Semantics of Traffic Generator and 

A state of a traffic generator (TrG) is an element of the set 

STrG = {(p, sto, env) I p E TrGProc, sto E STO, env E 

TrGProc is the set of states of the traffic generating 
process. STO = {(i, v) I i E IDENT, v E VALUE }, ENV 
= {(qid,i,o) 1 qid E ID, i €{Input*}, o  output*}), 0,, 
is the undefined traffic generator. 

Definition 3.6 The semantics of a traffic generator is 
defined by input-output labeled transition system as <STrG, 

3) 

Traffic Monitor 

{OTrG) 



LTrG, TTrG, SO (TrG)>, where 
1) STrG= ({(p, sto, env)} u {BTfi}) E TrGProcXSTOX 

ENV, contains all possible states of a traffic generator; 
2) L'TS = Li u Lo u GENERATE u {z}, is the set of all 

possible events; 
3) = (p, sto,, env,) is the initial state of a traffic 

generator; 
4) TTrG G STrG X L', X STrG, contains transitions satisfying 

the following inference rules: 

)(PI, sto,env'), output( pcid,msg) (p, sto, env) 

(p, sto, env) 

if en$= env[(pcid,i,o)/(pcid,i,o.msg)]; 
>(PI,  sto, env' ), 

if env' = env[( pcid, a .  i, 0) / (pcid, i , o)]; 

input (msg) 

>(ptrid, stoo, envo) . generate( pcoid,trid(ai,-,aq)) 
0 0 T f f i  

The operational semantics of a traffic monitor (TrM) is 
similar to that of a traffic generator. 

Definition 3.7 The semantics of a traffic monitor is 
defined by input-output labeled transition system as <STrM, 
L r M ,  TTrM, so (TrM)>, where 
1) STrM=({(p, sto, env)} u {OTrM}) TrMProc X STO X 

ENV, contains all possible states of the traffic monitor, 
0 T r M  is the undefined traffic monitor; 

2) L'TrM = Li u Lo u MONITOR u {z}, is the set of all 
possible events; 

3) so(Try = (p, sto,, env,) is the initial state of a traffic 
monitor; 

4) TTrM c STrM X L'TrM X STrM, contains transitions 
satisfying the following inference rules: 

b( p' , sto, env' ), 
if en$= env[(pcid, i,o)/(pcid,i,o-msg)]; 

if en?= env[(pcid,a-i,o)/(pcid,i,o)]; 

output ( pcid ,msg) (p, sto, env) 

(p, sto, env) +(p',sto,env'), input( msg) 

)( phid, stoo, envo) . monitor ( pcoid ,bid (a i,-,aq)) 
0 T r M  

3.3.3 Operational Semantics of PCOs and CPs 
As stated before, PCOs and CPs are behaviorally 
equivalent, so it allows us to concentrate on the 
operational semantics of PCOs. A PCO is modeled by two 
queues, messages in which are managed by a PCO 
process. 

Definition 3.8 The semantics of a PCO process can be 
given by input-output labeled transition system as <Spco, 

1) Spco= {(p, i, 0) I p E PCOProc, i, o E Msg*} contains 
all possible states of a PCO process. i, o are the 
sequences of messages in the input or output queue 
respectively. Msg = {PDUs}u{ASPs}. 

LPCO, TPCO, so @co)>, where 

2) Lypc0= Li u Lo u {z} is the set of all possible events; 
3) so = (p, 0, 0), 0 represents that the input and 

4) Tpco c Spco X L'pco X Spco, contains transitions 
output queues are empty at the initial state; 

satisfying the following inference rules: 

N(P, i * msg, 0) ; 
NP, i, 0) 

input (msg) (P,i,O) 
(p,i,msg.o) output(msg) 

To derive the operational semantics of a CP process, it is 
sufficient to substitute CP for PCO in all definition, where 
Msg is the set of all coordination messages (CMs). 

3.3.4 Operational Semantics of Test Module 
A test module (TM) can be abstracted from the behavior 
of test components, traffic generators, traffic monitors and 
coordination points defined in the test module. The state 
of a test module is determined by the states of all TCs, 
TrGs, TrMs and all CP processes. 

STM = sTC1 x "' x STCm x ST,, x * '* >: STQ x sTrM1 x * * *  x 
ST*,, sCPl ' * *  SCPn 

According to section 3.3.3 

Scp = {(p, i, 0) I p E CPProc, i, o E M,g*}, Msg = {CMs} 

All TCs are initialized with the undefined TC 0K with 
the exception of MTC. All TrGs and TrMs are initialized 
with the undefined TrG 0*& and undefined TrM OT,,, 
respectively. All CPs are initialized with empty queues. So 
the initial state of TM is 

- 
SO (TM) - (SO (MTC), @TCI, " ' >  0TCm-1, 0 T r G 1 ,  "*  9 OTrGp, 

OT~M1, "', OTrMq, sO(CPI), *"? SO(CPn)) 

For convenience, we denote so (TM) as 
... 

SO (TM) = (so (MTC), so (cpl), 7 so (Cpn) ) 

The set of events a test module can perform is the set 

L'TM = Li u Lo u {z} 

Definition 3.9 The semantics of a test module is defined 
by input-output labeled transition system as <STM, LTM, 
TTM, so (TM)>, where 

X STrMqX Scpi X 
1) STM = STcl X X STCm X STGl X ... X ST, X STrMl X . a *  

X ScPn 
2) L'TM = Li u Lo u {z} is the set of all possible events; ... 3) so (TM) = (so (MTC), so (cpi), 7 so (Cpn) ) is the initial state of 

a TM; 
4) TTM c STM X L'TM X STM, contains itransitions satisfying 

the inference rules defined in Appendix. 

3.3.5 Operational Semantics of Test System 

A test system (TS) combines the behavior of a test module 
and all PCO processes. 
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Definition 3.10 The semantics of a test system is 
defined by input-output labeled transition system as <ST,, 
LTS, TTS, (TS)>, where 
1) STS = sTMx sPCOl ". sPCOn 

2) LYTS= Li ULO u {z), is the set of all possible events; 
3) so (Ts) = (so (TM), so (pcol), --., so (peon)), is the initial state of 

4) TTs c S,, X L'TS X S,,, contains transitions satisfying 

Communication with the environment: 

0 ts 

0 ts 

Communication between test module and PCOs: 

a test system; 

the following inference rules: 

NpCo'i ; input (msg) , ts' , in TS pcoi input(msg) 

output(msg) , tsl , in TS pcoi outPut(msg) , PCO' i ; 

Nr 4. PROTOCOL PERFORMANCE TESTING Label Behavior Description 

In this section, the architecture design of a protocol 
performance test system based on the extended concurrent 
TTCN is described, and an example of test cases written in 
the extended concurrent TTCN is given. 

4.1 Architecture Design of Protocol Performance 

Figure 4.1 gives the architecture of a protocol performance 
test system based on the extended concurrent TTCN. A 
protocol performance test system consists of several test 
components, traffic generators and traffic monitors, a 
timer and a database of test context and evaluation tree. 

Test System 

L1 

PCO PCO PCO PCO 

create (PTC, B) 
(dltime := DELAY) 

start TM-01 
readtimer Tb-Ol(t1) a generate (MT, CONT 

M ? RECV-PDU(sock,recv,len,name,size) 
(TOTAL, dltime, data)) 3 readtimer TM-Ol(t2) 

[recv < TOTAL] 

--> L1 
(dltime := delay (dltime)) 

(p := TOTAL * PACK-SIZE * 8 / (t2 - tl)) 
terminate (PTC) 

Figure 4.1 Architecture of a protocol 
performance test system 

Nr 

Test components communicate with environment or with 
each other through interface queues and perform the 
evaluation of a TBE. The evaluation process is based on 
the operational semantics of the extended concurrent 
TTCN. Only one of the TCs is MTC which coordinates 
the actions of each TC. Traffic generators generate special 
kinds of traffic according to the requirement of TCs. 
Traffic monitors analyze the traffic received from PCOs 
and record the result of the analysis. Test context is the 
realization of the storage part of TCs, and evaluation tree 
is the implementation of the control part. 

4.2 An Example of Test Cases 
Protocol Integrated Test System (PITS) designed by 
Tsinghua University is an integrated tester, which can 
support protocol conformance testing, interoperability 
testing and performance testing. Now, PITS is used to test 
the performance of routers. The protocol performance test 
suite of routers is described in the extended concurrent 
TTCN. 

Label Behavior Description 

L1 monitor (PT, CONT (TOTAL, data, len)) 
P ! SEND-PDU(sock,recv,len,name,size) 

-> L1 
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Appendix. 
10 Mbps 

8 
6 
4 
2 
0 

64 128 256 512 1024 1500 bytes 

Figure 4.2 Throughput of one port of Cisco 4700 

5 .  CONCLUSIONS 
In this paper, we extended the concurrent TTCN to meet 
the needs of protocol performance testing, and then 
defined the operational semantics of the extenaed 
concurrent TTCN in terms of input-output labeled 
transition system. A practical architecture design of a 
protocol performance test system was proposed, and an 
example of test cases was given. 
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1. Inference Rules of TC's Operational Semantics 
0 (stop, sto, env) means no transition can take place; 
0 (id ?a; B, sto, env) L ( B ,  sto, env[(id, a. i, 0) / (id, i, o)]) 

( id!a;B,s to ,env)~(B,sto,env[( id , i ,o) / ( id , i ,o~a)])  

0 (B, [I B,, sto, env) -b(Bi',sto',env'), 

where env[X/Y] =def (env -{X})u{Y}; 

if (Bi, sto, env) --%(Bi', sto' , env' ) , p ELU { z} ; 

(B, [I B,, sto, env) &(B2', sto' , env') , 
if (B2, sto, env) *(BY, sto' , env') , ~ELu{T};  

0 ([q]; B, sto, env)&(B, sto, env), if q z TRUE; 
t 

([q]; B,sto,env)+(stop,sto,env),if q = FALSE; 

0 ([I:= v];B,sto,env)--+(B,sto[(I,x)/(I, v)],env), 
where sto[(I,x)/(I,v)]=(sto- {(I,x)})u((I,v)}; 

0 (exit >> B2, sto, env) -%(B2, sto,env), 

T 

(Bi >> B2,sto,env)-%(Bi'>> Bz,sto',env'), 
if(B1, sto, env)---!k(Bi', sto', env'), p E L u  {z); 

if (Bi =) B2,sto,env)---%(exit,sto',env'); 

0 (start (tid Val); B,sto,env)+(B, sto,env'), 

0 (81 B2;B3,s to ,env)~(B3,s to1,env ' ) ,  

z 

if env'= env[(timer,i,o)/ (timer,(tid,val).i,o)]; 
z 

0 (cancel (tid); B, sto, env) -(B, sto, env'), 
if env'= env[(timer,i,o)/(timer,(tid,O).i,o)]; 

0 (timeout (tid); B,sto,env)-(B,sto,env'),if 
env'= env[(timer,i,oi.(tid,O).02) /(timer,i,o1.02)]; 

0 (synctimer (testerid); B, sto, env)---+(B, sto, env'), 

z 

T 

if en?= env[(timer,i,o) /(timer,i,o.(testerid,now))]; 
where now is the current time. 

z 
0 (readtimer (t);B,sto,env)-(B,sto',env), 

0 (create(tcid, tpid[pci,...](ai,...)); B, sto, env)mc 
where sto'= sto((t,x)/(t,now)); 

&(B, sto' , env')M-rc, and 
create(tcid,tpid[pci,-]( ai,L)) 

0 T C  >(Btpid, StO, 0)tcid; 
z 

0 (ter min ate(tcid); B, sto, env)MTc --+ (B, sto' , e n v ' ) ~ ~ ~ ,  
% @TC. ter min ate(tcid) and (B, sto, enV)tcid 

0 (generate(pcoid,trid(ai;..));B,sto,env)-& (B, sto' ,env'), 

(monitor(pcoid,trid(ai; . a)); B,sto,env) +. (B, sto' , env' ). z 
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2. Inference Rules of TM's Operational Semantics 

Communication between TC and PCO: 
input(msg) input (msg) 

output( pcoid,msg) 

output ( pcoid ,msg) 

. t m  F t", in TM tc i  > t c ' i ;  

. t m  ~tm', in TM 
tci  > t c ' i ;  

Communication between TC and CP: . t m - - L , t " , i n ~ ~  
output (cpid,msg) input (msg ) 

t c i  > t c ' i ,  Cpj k c p ' j ;  

t m A t m ' , i n T M  
input(msg) output( msg) 

tCi + t c ' i ,  Cpj > c p ' j ;  

Creation of a test component: 

0 tm&tm', inTM 
create( tcid,tpid[pc~;-,pcp](ai,L,aq)) 

RrTc create(tcid,tpid[pcl;-,pcp](ai,L,aq)) 
mtc F mtc' , 

> tCtcid ; 

Termination of a test component: 

0 tm&tm',inTM 
ter min ate(tcid) ter min ate(tcid) mtc > mtc' , tCtcid 0 T C  ; 

Generate traffic: 

0 t m & t m ' , i n ~ ~  
generate( pcoid ,hid (a i;-,as)) tc > tc' , 

0 T f f i  ,trg; 
generate(pcoid,trid(ai,-.,aq)) 

Monitor traffic: 

0 tm&tm',inTM 
monitor(pcoid,trid(ai ,...,as)) tc k tc' , 

0 T r M  >m; monitor(pcoid,trid(ai, .,an)) 
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