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Abstract-With the network applications development, routers
must support those functions such as firewalls, provision of
QoS and traffic billing etc. All these functions need
classification of IP packets, according to which it is determined
how different packets are processed subsequently. In this
article, a novel IP classification algorithm is proposed based on
the Grid of Tries algorithm. The new algorithm not only
eliminates original limitations in the case of multiple fields but

also shows better performance in regard to both time and space.

It has better overall performance than many other algorithms.

1. INTRODUCTION

Future IP network must provide more service types and
better quality of service [5], which include differentiated
service [1], firewalls [2], policy-based routing [3], virtual
private network and traffic billing [4] etc. All these functions
need classification of IP packets.

In this paper, we first provide the mathematical model of
IP classification problem. Then we present a novel IP
classification algorithm applying to multiple fields based on
the two-dimension IP classification. We also compare our
new algorithm to others. The simulation result shows that
our algorithm has best overall performance.

1I. MATHEMATICAL MODEL OF [P CLASSIFICATION
A.  Terminology Definitions [8]

An address D is a bit string of W bits in length;

A prefix P is a bit string of length between 0 and W. We
use length (P) to denote the number of bits in a prefix;

A header H has K fields, which are denoted by
H[1],H[2],.. . H[K] respectively. Each field is a string of
binary bits;

A filter F has also K fields. Each field F/i] in a filter can
specify any of the three kinds of matches: exact match,
prefix match, or range match;

It is called an exact match iff a single value is specified
for the ith filter field (i.e. F/i]) and the header field H/i] is
equal to Ffi];

It is called a prefix match iff a prefix is specified for the
ith filter field and the first length(F[i]) binary bits of the
header field H/i] are the same as those of F/[i];

It is called a range match iff a range of values F/i]
=[vall,val2] is specified for the ith filter field and the
header field H/i] falls into that range, i.e. Hfi] € [vall,val2],

A filter F is said to be a matching filter for a header H iff
each field H/i] of H matches the corresponding field F/i] of
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F. The type of match is specified by F/i] and could be an
exact match, a prefix match or a range match;

A set of N filters is called a filter database, which is
denoted by FS;

Each filter F has a cost property denoted by cost (F). For
VF,,F, € FS, if cost(F)=cost(F,) then F,=F, We use
the cost property to assure that there is at most one matching
filter.

B.  The Best Matching Filter Problem and IP Classification

We define the following problem as the best matching
filter problem:

Given a filter database FS# (J and a header H, find the
best matching filter f;,, which meets the following
conditions:

1) fose FS;

(2) fpey matches H;

B VfeFS f*f.
COSt(fres) <cost(f).

IP classification is an instance of the best matching filter
problem. In theory, seven fields can be used for the filter:
destination/source IP address, destination/source transport
port, type of service, protocol type and flag of transport layer.
The sum of bits of these fields 1s 120 (we assume that all the
seven fields reside in IP packet header for the sake of
convenience, although some fields are in TCP header
actually.) Statistical results of some actual filter databases
used by ISPs show that 17% of the filters specify only one
field, 23% specify three fields, and 60% specify four fields
[6].

if f matches H, then

[1I. RELATED WORKS

Packet classification based on Patterns [7] is used in the
operating system when dispatching data packets of input
queue to different process spaces. It is the first algorithm
avoiding linear lookup. Its performance has direct ratio with
the number of fields and is independent of the number of
filters. But this algorithm has very strong limitations on
filters, thus it is not suitable for IP routers.

Crossproducting algorithm [8] is based on caches. For
bigger classifiers, the authors propose a caching technique
(on-demand crossproducting) with a non-deterministic
classification time.

Modular algorithm [9] is an IP classification algorithm
based on statistics. It may optimize the lookup data structure
according to the distribution of filter matching ratio and 1P
traffic. Short of effective statistic parameters, this algorithm
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cannot be practically used for IP routers now.

RFC (Recursive Flow Classification) algorithm [6] is a
simple multi-stage classification algorithm, which maps the
S bits header to the T bits ClassID (T << S) step by step. It is
the fastest algorithm ever known, but it needs a lot of
pre-computation (usually more than ten seconds) and it may
suffer from space explosion.

A solution called Grid of Tries is proposed in [8]. In this
scheme, the trie-tree data structure is extended to two
dimensions. This is a good solution if the filters are
restricted to only two fields, but it is difficult to extend it to
apply to more fields.

A hardware-only algorithm could employ a ternary CAM
(content-addressable memory). Ternary CAMs store words
with three-valued digits: ‘0’, ‘1° or “*’ (wildcard). The rules
are stored in the CAM array in the order of decreasing
priority. Given a packet-header to classify, the CAM
performs a comparison against all of its entries in parallel,
and a priority encoder selects the first matching rule. While
simple and flexible, CAMs are currently suitable only for
small tables; they are too expensive, too small and consume
too much power for large classifiers. Furthermore, some
operators are not directly supported, and so the memory
array may be used very inefficiently.

In this article, we proposed a novel lookup algorithm
called non-collision hash trie-tree algorithm, which is based
on Grid of Tries algorithm. Average time consumed and
space requirement of this algorithm are less than those of
Grid of Tries, and it gets rid of the limitation of filters in
Grid of Tries. It is the most attractive candidate if
implemented by means of software.

IV. NON-COLLISION HASH TRIE-TREE ALGORITHM
A. Basic Algorithm

We mentioned that seven fields in IP packets might be the
candidate fields of the filter. But actual filter databases
usually use only five fields: destination/source IP addresses,
destination/source ports and protocol type. The width of
protocol type field is 8 bits. To program conveniently, we
extend the protocol type field to 16 bits.

TABLEI AN EXAMPLE DATABASE OF FILTERS

ClassID Dest-IP src-1P Dest-port sre-port Prot
0 10.1.* * 10.2.%.* * * *
1 10.3.** 10.4.** 80 x 17
2 10.5.% * 10.6.%.* 80 * 17
3 10.5.%.* 10.6.*%.* {20,21] * 6
4 10.7.%.* 10.7.*.* * gt 1023 6
) 5 * * * * *
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The value of destination port, source port and protocol
type ranges from O to 65535, but in actual filters they only
use a very small part of the whole range. Currently, the value
of protocol field is limited to TCP, UDP, ICMP, IGMP,
(E)IGRP, GRE and IPINIP. In most Client-Server software
architectures, ports can be roughly divided into two
categories [10]. One is the reserved port which numbers in
1-1023 and the other is the ephemeral port which numbers
larger than 1023. Ephemeral ports are usually used in client
software and are assigned by the kernel. They are nothing
but to identify an endpoint of a comnection. It is almost
impossible that a filter specify a specific port larger than
1023. Usually, filters specify a range such as gt1023
meaning that all ports larger than 1023 (but less than 65535).
The most widely used reserved ports are 20,21 (FTP) and 80
(www), other ports are used less frequently.

Our analysis above shows that the number of combination
of destination/source ports and protocol value in actual
filters is very small. Based on this observation, we construct
a two-stage lookup table that can be used to lookup without
collision at all. We take table I for example to illustrate our
idea.

Table 1 is a filter database that contains six filters. We
assume ClassiD is the same as the filter cost in this database.
Take the destination port for example. We assign each port
in 0-65535 a bitmap. This bitmap denotes the filters the port
matches (the length of bitmap is equal to the number of
filters). For example, the bitmap of ports 21 and 22 are both
100111, which means they match filter 0,3,4 and 5.
According to these bitmaps, we classify all possible
destination ports into different equivalent classes. The ports
with the same bitmap belong to the same class. The bitmap
of equivalence class A is denoted by bmp(4). The set of all
such destination port equivalent classes is denoted by D_Set.

. And the total number of destination port equivalent classes

is denoted by D. For example, the D_Ser of Table 1 is {{80},
[20,21], {0-65535 except 20,21,80}}. In the same manner,
we construct the set of source port equivalent classes S_Set
and protocol equivalent classes P_Ser, whose element
numbers are S and P respectively.

If a €D_Set, b €S_Set, ¢ EP_Set, the 3-tuple (a,b,c) is

dnort sport proto

\
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Fig.1. Non-collision hash trie-tree algorithm
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called a cross-combination.

Now we further divide the set of all the
cross-combinations into different equivalent classess called
DSP_Set. We divide as follows:

Consider two cross-combination (a,b,c) and (d.ef). If
bmp(a)&bmp(b)&bmp(c) = bmp(d)&bmp(e)&bmp(f) then
(a,b,c) and (d,ef) belong to the same class, otherwise they
belong to different classes.

Each element of the DSP_Ser (a cross-combination
equivalent class, notice that it is a set itself) has a
corresponding set of destination and source IP prefix pairs.
These IP prefix pairs are those of the filters whose
destination port, source port and protocol number 3-tuple
belongs to the element. The cross-combinations that belong
to the same element of DSP_Set share the same pointer to a
destination and source IP prefix set. Non-collision hash
trie-tree algorithm first finds out the pointer to the
destination and source prefix pair set by looking up a
non-collision hash table according to destination port, source
port and protocol number. Then we perform a
two-dimension trie-tree lookup in the destination and source
IP prefix pairs to obtain the final ClassiD.

B.  Non-collusion hash lookup

When classifying a packet with its header
H(dport,sprot,proto) (representing destination port, source
port and protocol respectively, we do not consider IP address
fields in this step). We first look up three tables using dport,
sport and proto as the indices respectively. We use a function
of these lookup result g(fd(dport).fs(sport).fp(proto)) as the
index to perform another lookup. The result is
h(g(fd(@dport).fs(sport).fp(proto))), which is the pointer to a

ALGORITHM I ConstrucTion OF fd(fs,fp) TABLE

*table_fx table_fx_setup()
{
/*allocate memory and initialization */
p=new_table_fx();
for(n=0;n<65536,n++){
Get bmp(n);
eq=search_in_eqivalence_class_x_set(bmp(n));
if(eq == NULL) { /* new bmp */
eq=new_eqivalence_class_x(bmp(n));
add eq into x_set;
}
p->table[n]).ID=eq->ID;
}

return p;
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ALGORITHM Il CONSTRUCTION OF h TABLE

*table_h table_h_setup()
{
indx=0;
/* allocate memory and initialization */
p=new_table_h(D,S,P);
for eqd in d_set,eqs in s_set,eqp in p_set {
bmp=eqd->bmp&eqs->bmp&eqp->bmp;
eq=search_eqvivalence_class_dsp(bmp);
if(eq is null) { *new bmp*/
eg=new_eqivalence_class_dsp(bmp);
add eq into dsp_set;
}
p->table[indx++].ID=eq->1D;

——

}

set of destination and source IP prefix pairs. We number the
D equivalent classes’ IDs of D_Ser as 0,1,2,...,D-1 and
define fd(dport) as the equivalent classID of dport. And it is
the same with fs and fp.

Fig. 1 shows the lookup process stated above. The
rectangle represents a lookup table and g is a hash function.
We choose g(d,s,p)=PSd+Ps+p. According to our
definitions of fd, fs and fp, we have 0<d <D -1,
0<s<S-1, 0< p<P-—1.Now we prove g will not
cause any collision.

Theorem Define g(d,s,p)=PSd+Ps+p (d,s,p,D.S,PEZ) ,
0<d<D-1, 0<s<S-1, 0<p<P-1, if
g(d.s1,p1)=g(dy52p2), thend,;=d;, 51=53, pi=p>.
Proof From PSd;+Ps;+p;=PSd,+Ps,tp,
we getpg-p]ZPSdI+PS1-PSd2-PS_7=P[S(d]-d2)+S1—Sz].
Taking the absolute values of both sides, we have
[p-pi/=P[S(d;-d3)+s/-s5]. Because p;, p,€[0,P-1], [p>-pi/<P
and /S(d;-d3)+s)-s,/ is an integer, we conclude that p,-p;=0,
i.e. p>=p,. For the same reason , we have s,=s;, d;=d,.[]
Now we have proved that g is a non-collision function.
Construction of these tables and the two-dimension trie-tree
is completed by reading the filter database during the
pre-computation stage. Thus, we can find the pointer to the
set of destination-source IP prefix pairs with four memory
accesses. The next step is to look up through the
two-dimension trie-tree using destination and source IP
addresses in the packet header. Algorithm I and II are the
setup algorithms of these tables.

C. Lookup In Destination-Source IP Prefix Pairs

In this section, we introduce a simplified Grid of Tries
lookup algorithm. Extending the trie-tree data structure from
one dimension to two-dimension, we have the
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two-dimension trie-tree. We take the filter database in table
IT as an example to show this process (assume that the width
of IP address in the table is 2).

We first build up a trie-tree (denoted by Dest-Trie tree)
according to the destination IP prefixes. For each node in
Dest-Trie tree, if there exists the corresponding destination
IP prefix, it points to a source IP prefix trie-tree (denoted by
Src-Trie) otherwise the pointer is null. A Dest-Trie node not
only contains the corresponding source IP prefixes but also
those of its ancestors in Dest-Trie. In that case, time
complexity of lookup in the two-dimension trie tree is O(W),
but since each Dest-Trie node stores both the pair source IP
prefixes of its own and those of its ancestors, the space
complexity turns out to be @(N?).

We can get rid of the redundant copies. Every Dest-Trie
node only contains the corresponding source IP prefixes in
the database. But in this case, in order to find out the final
ClassID with the least cost, we need search not only the
Src-Trie but aiso that of its ancestors. Thus the time
complexity rises up to O(W?), although we need less
space.

The answer is to introduce a switch pointer. In the process
of pre-computation, we direct the null pointer of the Src-Trie
node to a Src-Trie node of one of its Dest-Trie ancestors’ so
that we can proceed further when we go along the longest
matching path. In addition, we must make sure that the
longer a destination-source prefix pair is, the lower its cost.
Take filters 2,3 and 4 of table 2 for example, filter 2 is
shorter than filter 3 in destination-source pair length, and
filter 3 1s shorter than filter 4. But the fact is that filter 2’s
cost is lower than filter 3 and filter 3’s cost is lower than
filter 4’s. So they do not accord with our principle of a
longer pair with a lower cost. However, we observe that if
we remove filter 3 and 4 from the table, our lookup result
does not change. That is because a header matching filter 3
and filter 4 will surely match fiiter 2 and filter 2 has a lower
cost. In other words, filter 3 and filter 4 are redundant. There
are two ways to deal with the problem. The first one is to
guarantee that there is no redundancy at all when building up

2 £1 10

Fig.2. Improved data structure of 2D trie-tree
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TABLE I AN ExampLE OF IP Pairs

ClassiD dest-IP src-1P
0 0* 10*

1 0* 01*

2 0* 1*

3 00* 1*

4 00* 11*

S 10* 1*

6 * 00*

our filter database; the other is to change the filter 3 and 4’s
ClassID to 2 in the pre-computation stage. Both will
guarantee the correctness of the algorithm.

The ultimate two-dimension trie-tree is shown as Fig. 2,
where the number beside the letter “f” denotes the
corresponding ClassID (it is also the sequence number of the
filter and its cost). Given this figure, we look up the
matching filter with the lowest cost for a coming header as
follows: First perform a longest destination IP prefix
matching process ending at some node in Dest-Trie. Then go
along the 0 or 1 pointer (or if null, a switch pointer) of the
corresponding Src-Trie to perform a longest source IP prefix
matching according to the header’s destination and source
IPs. We go as further as we can, and the ClassID of the filter
with the lowest cost along the path is the final result we
want.

V. LooOkUP PERFORMANCE

In the worst case, it takes four serial lookups to obtain the
pointer to the two-dimension trie-tree, i.e. lookup in the table
fd fsfp and h. Lookup through the two-dimension trie-tree
needs to visit 2 nodes in the worst case. So the total
number of memory access is 2W+4 in the worst case.
What’s more, the time consumed is irrelevant to the number
of filters. In contrast, even with a hash function without
collision, Grid of Tries needs 4(1+2W) memory accesses.

It is a little more complicated as for the space complexity
of non-collision hash algorithm. The numbers of entries of
the f5,fd and fp tables are all 65536 and the number of entries
of table 4 is D XS XP. Theoretically speaking, the number
of table A’s entries could be up to 65536 X 65536 X 65536.
However, as analyzed above, D, S and P are rather small in
normal cases, so we expect that the number of table A’s
entries is quite small. As for the two-dimension trie-tree,
since a filter needs 2W¥ trie nodes at the most and there are N
filters together, space needed is about 2NW. Thus we could
estimate that the total space is Tuble_Size+2NW in the worst
case, while Grid of Tries for multi-fields also needs about
Hash_Size+2NW, where Hash_Size denotes the space for
hash table. In order to gain more time efficiency, the hash



table usually consumes a lot of memory. In our test,
non-collision hash trie-tree algorithm also shows better
performance in space.

It is difficult to analyze the average performance of both
time and space. Even worse, little is done in sampling for
both filters and IP flow in the real Internet. Because of that,
we design a virtual environment to perform a testing. Our
concern focuses on the relative performance between
non-collision hash trie-tree and Grid-of-Trie, so the virtual
environment will suffice. We make reasonable assumptions
about 1P flows and fiiters and generate 1P packet flow and
filters from a random generator. For the sake of
comparability, we add in the same limitations needed by the
Grid-of-Trie algorithm. We observe that even our
assumptions favor the Grid-of-Trie, non-collision hash
algorithm still shows better performance in both time and
space. So we expect the difference will be more obvious in
practice. Testing results are shown in Fig.3 and Fig. 4.

VI. CONCLUSION AND FUTURE WORK

In this article, a novel IP classification algorithm is
proposed based on the Grid of Tries algorithm. The new
algorithm not only eliminates original limitations in the case
of multiple fields but also shows better performance in
regard to both time and space. It has better overall
performance than many other algorithms.

The algorithm we presented can be improved further. In
the process of lookup through two-dimension trie-tree, our
algorithm will go one step according to one bit of the header.
If it can lookup several bits at one time, the depth of trie-tree
will reduce greatly and the performance will improve. But to
do this we need more memory. Future work is to explore the
distribution of IP prefixes [11], by which we hope that we
can select the depth of trie-tree and decide which bits to look
at when going down the trie-tree.
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Fig.3. Comparison of time performance between non-colision trie-tree
(denoted by Noncol) and Grid of Tries (denoted by Grid), where x-axis
plots the number of filters and y-axis plots the total seconds consumed
while processing 10 packets.
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Fig.4. Comparison of space performance between non-colision trie-tree
(denoted by Noncol) and Grid of Tries (denoted by Grid), where x-axis plots
the number of filters and y-axis plots the maxium memory (MB) consumed.
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