
Source Address Filtering in Large Scale Network: A
Cooperative Software Mechanism Design

Shu Yang∗, Mingwei Xu∗, Dan Wang†, Jianping Wu∗
∗Dept. of Computer Science and Technology, Tsinghua University

†Dept. of Computing, Hong Kong Polytechnic University

1. INTRODUCTION
To prevent network infrastructure frommalicious traf-

fic, such as DDoS attack and scanning, source filtering
is widely used in the network. There are different ways
to store the filters, e.g., a blacklist of source addresses.
Among them, TCAM-based is used as the de facto,
because of its wire speed performance. Unfortunately,
TCAM is a scarce resource because it’s limited by small
capacity, high power consumption and high cost. To
save storage space, some TCAM-based solutions even
block part of the legitimate traffic for better aggrega-
tion. Another choice is software based solutions, which
have larger storage space compared to hardware based
solutions. However, they require multiple accesses for a
single lookup, which causes latency.
Traditional schemes place the filter at border routers,

where transit traffic is certain to pass by. This largely
increases processing burden on border routers, while
routers at other locations still have spare resources.
In this paper, we design a new mechanism for source

filtering. We store the filters in software. Each router
just has to lookup a few bits in the source addresses,
and routers along the forwarding path of a packet co-
operatively lookup all bits in the source addresses. Thus
we can both reduce the processing time and block all
malicious traffic with enough memory space. Besides,
we want to balance the load across different routers.

a d

c

b

� �

� �

�

���...

� �

� �

� � �

� �

�

Figure 1: Example of our mechanism for source filtering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT Student Workshop, December 6, 2011, Tokyo, Japan.
Copyright 2011 ACM 978-1-4503-1042-0/11/0012 ...$10.00.

We first use a simple example to explain our idea. In
Figure 1, router a is the ingress and d is the outgress
router. Assume the source address has 3 bits, and there
are 3 source filters: 1*, 00*, 010. The source filters are
organized as uni-bit tries. Traditionally, the filters are
placed at border router, e.g., router a. Thus a may
require 3 accesses to memory to filter malicious traffic
in the worst case.
In our new mechanism, router a has only to check

the 0th bit, b, c check the 1st, and d checks the 2nd.
Assume that a packet with source address 010 arrives
at router a, and the path towards destination is {a, b, d}.
First, router a checks the 0th bit in source address, and
moves the pointer from the root to the 1st level, then
it passes the packet to router b. b checks the 1st bit
and passes the packet to d, which checks the 2nd bit
and concludes that the packet should be filtered. With
the mechanism, each router requires only one access
to memory. When the network is large, the amortized
burden on each router can be quite low.
Due to page limit, protocol design is out of our con-

sideration. In this paper, we formulate the problem as
finding a scheme such that 1) along any path that a
packet may travel through, all bits in source address
should be covered, i.e., be checked by a router along the
path and 2) the load should be balanced across different
routers. We show that the problem is NP-complete and
develop a heuristic algorithm to solve it.
At last, we conduct a case study using the topology of

China Education and Research Network 2 (CERNET2),
the world’s largest IPv6 backbone network (including 59
Giga-PoPs). The results show that the load is better
balanced with the new mechanism.

2. PROBLEM FORMULATION
Let G = (V,E) be a network, where V is the set of

routers, and E is the set of links. Let R denote the set
of border routers in the network. Let L be a path (i.e.,
an ordered set of routers), P be the set of paths that a
packet may traverse through the network. For u, v ∈ L,
define u �L v as node u be the predecessor of v on L.
Let T = {b0, b1, . . . , } (0 ≤ bi ≤ 31 for IPv4, and

0 ≤ bi ≤ 127 for IPv6) be the set of bits that has to

be checked. Each router has only to check a few bits
in source addresses, let Bv ⊆ T be the set of bits that

v should check, and
−→
B = (Bv1 ,Bv2 , . . .), vi ∈ V be a

vector representing a covering scheme. Along a path,
all routers cooperatively check all bits in T from higher
to lower bits. Each router in the network has limited
capacity due to CPU limitations. We model this as the
maximum number of additional bits in source addresses
that the router can process. Let Cv be the capacity of
v. To balance the load across the network, let f(x)
be a piecewise-linear increasing, convex function, and

F (
−→
B) =

∑

v

f(|Bv|/Cv) be the total cost of
−→
B ′. Then

we can formulate the problem as follows,

minF (
−→
B) (1)

s.t. |Bv| ≤ Cv, ∀v ∈ V (2)

⋃

v∈L

Bv ⊇ T , ∀L ∈ P (3)

⋃

u�Lv

Bu = T or
⋃

u�Lv

Bu = {p ∈ T |p < q,∀q ∈ Bv},∀v (4)

Eq. (1) expresses the objective to minimize the total
cost on all routers. Eq. (2) expresses the constraint on
capacity. Eq. (3) states that all bits must be covered
along any path that a packet can traverse. Eq. (4)
states that on a router which is on the path from ingress
to outgress, if not all bits have been checked, then the
successor node should check lower bits. We call the
solution to the problem the optimal covering scheme.

3. OPTIMAL COVERING SCHEME
Theorem 1. Finding the optimal covering scheme is

NP-complete.

Proof. Due to page limit, we put the proof in [3].
Next, we develop Algorithm Opt-Cover() based on

tabu-search, which is widely used to solve optimization
problems in many applications[1].

We call
−→
B ′ = (B′v1 ,B

′
v2
, . . .) be a neighbor of

−→
B , if

∃vi, vj ∈ V, ∃p ∈ Bvj such that 1) B′vi = Bvi∪{p},B
′
vj

=

Bvj\{p} and 2) B′vk = Bvk , ∀k 6= i, j and 3)
−→
B ′ satis-

fies Eq. (2)-Eq.(4). Let swap(vi, vj , p) be a swapping
operation that adds p to Bvi and deletes p from Bvj ,

For a covering scheme
−→
B and its neighbor

−→
B ′, we can

find a swapping operation that transforms
−→
B to

−→
B ′, let

S(
−→
B ,

−→
B ′) denote the swapping operation. Besides, let

N(
−→
B) be the set of all neighbors of

−→
B .

Tabu-search iteratively searches from a covering scheme
−→
B to a new scheme

−→
B ′ in N(

−→
B). Opt-Cover() main-

tains a tabu list, that includes the recent swapping oper-

ations. Thus the neighboring space excludes
−→
B ′, where

S(
−→
B ,

−→
B ′) is in the tabu list. Opt-Cover() records the

best covering scheme ever found, and stops if specified
number of iterations happens since the last best cov-
ering scheme was found. Besides, Opt-Cover() permits

overriding of tabu list when the covering scheme is bet-
ter than the best covering scheme.

Algorithm 1: Opt-Cover()
Input : T ,P
Output : Bv , ∀v ∈ V

begin1

Bv ← T , ∀v ∈ R, Bv ← ∅, ∀v 6∈ R2
−→
B ← (Bv1

,Bv2
, . . .), tabu list ← ∅,

−→
Be←

−→
B3

while Num <threshold do4

Find
−→
B ′ ∈ N(

−→
B), where S(

−→
B,
−→
B ′) 6∈ tabu list and5

F (
−→
B ′) is minimized, Num++

if
−→
B ′ does not exist then6

Find
−→
B ′ ∈ N(

−→
B), where F (

−→
B ′) < F (

−→
Be) and7

F (
−→
B ′) is minimized

if
−→
B ′ doest not exist then return

−→
B8

if
−→
B ′ is the best solution then Num← 0,

−→
Be←

−→
B ′9

tabu list = tabu list ∪ S(
−→
B,
−→
B ′)10

end11

4. A CASE STUDY
We conduct a case study with the real topology of

CERNET2. CERNET2 has two international exchange
centers connecting to the Internet, Beijing (CNGI-6IX)
and Shanghai (CNGI-SHIX). We want to block mali-
cious traffic from CNGI-6IX to CNGI-SHIX along a pre-
defined path that has six routers, i.e., {Beijing, Tian-
jin, Jinan, Hefei, Nanjing, Shanghai}. Figure 2 (the top
bar) shows the estimated left capacity on each router.
In this paper, we use the same piecewise linear function
f(x) with [2] (f(x) = 5000 if x ≥ 11/10, f(x) = 1 if
x < 1/3, and f(x) = 3 if 1/3 ≤ x ≤ 2/3).
Traditional source filtering needs to check 128 bits

(CERNET2 is an IPv6 network) in source addresses on
border router. The additional burden exceeds the left
capacity. The total cost is

∑

v

f(|Bv|/Cv) = 5000.

Figure 2 (the bottom bar) shows the results computed
by Algorithm Opt-Cover(). Out of 128 bits, each router
has only to check at most 47 bits in source addresses.
The total cost on all routers is 8.

BJ TJ JN HF NJ SH

20

40

60

80

100

120

N
u

m
b

er
 o

f
B

it
s

26

11 16
7

21

47

80

36
49

22

64

113

Figure 2: Number of additional bits that each router has to
check in source addresses

5. ACKNOWLEDGMENTS
This work is supported by NSFC under grant No.

61073166 and 973 Program under grant No. 2009CB320502.

6. REFERENCES
[1] F. Glover. Tabu search – Part I. ORSA J. on Computing,

1(3):190–206, 1989.
[2] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On selfish

routing in internet-like environments. In Proc. ACM

SIGCOMM’03, Karlsruhe, Germany, Aug 2003.
[3] S. Yang and M. Xu. Source address filtering in large scale

network: A cooperative software mechanism design. Technical
report, Tsinghua University, Aug 2011.
http://www.wdklife.com/tech-report.pdf.

	Introduction
	Problem Formulation
	Optimal Covering Scheme
	A Case Study
	Acknowledgments
	References

