COMPUTERS & SECURITY 28 (2009) 260-275

available at www.sciencedirect.com

Computers
&

=z
*s’ ScienceDirect Security

journal homepage: www.elsevier.com/locate/cose

® Towards secure dynamic collaborations with
group-based RBAC model

Qi Li% Xinwen Zhang®, Mingwei Xu®*, Jianping Wu®

#Department of Computer Science, Tsinghua University, Beijing 100084, China
bSamsung Information Systems America, San Jose, CA 95134, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 22 April 2007
Received in revised form

20 November 2008
Accepted 12 December 2008

Keywords:

Access control

RBAC

Group-based RBAC
GB-RBAC

Secure collaborations

Role-Based Access Control (RBAC) has become a popular technique for security purposes
with increasing accessibility of information and data, especially in large-scale enterprise
environments. However, authorization management in dynamic and ad-hoc collaborations
between different groups or domains in these environments is still an unresolved problem.
Traditional RBAC models cannot solve this problem because they cannot support security
policy composition from different groups, and lack efficient administrative models for
dynamic collaborations. In this paper, we propose a group-based RBAC model (GB-RBAC)
for secure collaborations which is based on RBAC96 and extended with group concept to
capture dynamic users and permissions. We propose a decentralized security adminis-
trative model for GB-RBAC to address the management issues of RBAC in collaborations. As
a unique property, our model supports two levels of authorization management: global or
system level management by system administrators and local or group level management
by group administrators. In this way, our model implements the principles of management
autonomy and separation of duty (SoD) in security administrations. We apply our model
for authorization management in collaborations by introducing the concept of virtual
group. A virtual group is built for a collaboration between multi-groups, where all members
build trust relation within the group and are authorized to join and perform operations for
the collaborative work. Compared with existing work, our model supports dynamic and ad-
hoc collaborations in large-scale systems with the properties of controllable, decentralized,
and fine-grained security management.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

shared resources (Nita-Rotaru and Li, 2004). With the
increasing scalability of collaborations, access and usage

The past decade has seen the emergence and wide use of
e-commerce and e-government systems, in which web and
Internet-based services are becoming pervasive. More and
more collaborative applications have been developed based on
these existing systems and infrastructures to increase the
efficiency and productivity. Typically, in a collaborative work,
users from different groups cooperate by operating on some

* Corresponding author. Tel.: +8610 62785822.

control of information and services becomes very complex.
The fundamental security problem in a collaboration is to
control the admission of users to collaborations, and their
permissions to access the resources, typically based on their
job duty or skills. Researchers have proposed and imple-
mented many access control models. Among them, Role-
based Access Control (RBAC) is the most attractive solution

E-mail addresses: ligi@csnetl.cs.tsinghua.edu.cn (Q. Li), xinwen.z@samsung.com (X. Zhang), xmw@csnetl.cs.tsinghua.edu.cn

(M. Xu), jianping@cernet.edu.cn (J. Wu).

0167-4048/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cose.2008.12.004

mailto:liqi@csnet1.cs.tsinghua.edu.cn
mailto:xinwen.z@samsung.com
mailto:xmw@csnet1.cs.tsinghua.edu.cn
mailto:jianping@cernet.edu.cn
http://www.elsevier.com/locate/cose

COMPUTERS & SECURITY 28 (2009) 260-275 261

with the properties of “policy-neutral” and simplicity of
administration. In a RBAC model, both permissions and users
are assigned to roles by system administrators, such that
a user obtains the permissions of the assigned roles.

Traditional RBAC models such as RBAC96 (Sandhu et al.,
1996) and NIST RBAC standard (Ferraiolo et al., 2001) cannot
provide efficient authorization management for collabora-
tions. The main reason is that these models focus on
controlling user permissions according to pre-assigned roles
and permission-role assignment relations. While in dynamic
environments, roles and user-role assignment relations are
not fixed during collaborations. On the other side, because the
numbers of roles and users in a RBAC system vary from tens to
thousands in large enterprise systems, authorization
management is a big obstacle for secure access. Many
administrative models for RBAC have been proposed for
convenience and management efficiency purposes (Crampton
and Loizou, 2003; Crampton, 2005; Osborn et al., 2000; Sandhu
et al., 1999; Oh et al., 2006). However, most (if not all) of these
models define administration policies based on existing role
hierarchies such that they cannot support dynamic and ad-
hoc collaborations between groups since the role hierarchy in
these scenarios is not static.

Many advanced RBAC models have been proposed for
authorizations in multi-domain environments. For example,
a policy composition framework is proposed in (Shafig et al.,
2005; Joshi et al., 2004; Piromruen and Joshi, 2005) to integrate
RBAC policies from multiple domains and separation of duty
(SoD) constraints are analyzed. Most of these recent work
addresses secure collaborations using direct role mapping
(Shafiq et al., 2005; Joshi et al., 2004; Kapadia et al., 2000) and
can solve some problems when integrating RBAC policies,
such as role promotion (Kapadia et al., 2000) and user-specific
Separation of Duty (SoD) violation, role-specific SoD and role-
assignment violations (Shafig et al., 2005). However, in role
mapping approach, a role in one group is mapped to a role in
another group, which requires non-trivial efforts from secu-
rity administrators for permission management, especially
with hundreds or thousands of users, roles, and their inter-
relationships, because in general only a small team of security
administrators are delegated to manage these components.
The problem becomes worse with collaborations where
dynamic user-role and permission-role assignments are
required. For example, different video conferences always
need different users in a group to participate, so there must be
many administrative tasks for administrators to dynamically
modify role and permission assignments for video confer-
ences. It is impossible and infeasible for few local adminis-
trators to perform these assignments. Therefore, the
management issue of RBAC is an important factor which
directly restricts its deployment and usage in dynamic
collaborations.

Our motivation behind this issue is to simplify decentralize
administrative tasks, and thus enhance the practicability of
RBAC in dynamic collaboration environments. In this paper,
we propose a truly decentralized and group-based RBAC (GB-
RBAC) model by introducing the concept of groups and
modifying the user-role assignment model in previous work
(Oh et al., 2006; Sandhu et al., 1999). GB-RBAC model retains
the main features of RBAC and simplifies user-role

assignments with two mechanisms. First, GB-RBAC provides
a default group role set (DSet) to reduce administrative tasks
through the group component. In this way, a new member of
a group can be assigned with a set of default roles without
administrator’s involvement. Secondly, a group administrator
can assign other explicit roles to a group member based on
local administrative policies in a fine-grained manner. Hence,
simplified but flexible user-role assignment is implemented in
our model. Therefore, our model provides a two-level
administrative model to facilitate RBAC administrative issues:
global or system level and local or group level. Thus the
following advantages can be achieved.

— Our model naturally supports decentralized management
in a simple and efficient way. For example, in group
collaboration systems (Nita-Rotaru and Li, 2004), group
administrators can add or modify assignments to meet the
application and local administration requirements without
global administrators’ involvement. This simplifies system-
level administrative tasks, and provides a flexible admin-
istration mechanism for dynamic user-role assignments,
especially in ad-hoc collaboration environments.

- Our administrative model provides tunable group-level
administrative permissions, which are controlled by
system-level administrators. Therefore, not only is user-role
assignment for system administrator greatly simplified, but
the principle of separation of duty (SoD) in administrative
level (Crampton, 2006) is also implemented.

- Our administrative model satisfies the requirements of
autonomy administration for RBAC, such as fine-grained
user-role assignment and tunable group-level administra-
tion (Nissanke and Khayat, 2004), which are not solved
completely by previous work because of centralized admin-
istrative domain with few system-level administrators.

The contributions of this paper are four-fold.

(i) We propose a GB-RBAC model, which is based on the
RBAC96 model and extended with a group concept. We
identify the difference between our model and other
group-based approaches.

(ii) We develop a two-level administrative model for GB-RBAC
with the features of decentralized management, tunable
group-level administrative permissions, and the principle
of administrative SoD.

(iii) We develop a mechanism to use our model for secure ad-
hoc collaborations between groups by introducing the
concept of virtual group. We define algorithms to perform
user-role and group-role assignments in virtual groups.

(iv) We develop an authorization service based on the GB-
RBAC model, and the prototype of the model shows the
feasibility in the real distributed applications. Our model
provides acceptable performance for ad-hoc collabora-
tion applications.

The rest of this paper is organized as follows. We discuss
related work and the difference from our approach in Section 2.
The GB-RBAC model and its administrative model are presented
in Section 3 and Section 4, respectively. Section 5 explains the
ad-hoc collaboration scheme with GB-RBAC. Section 6 presents

262 COMPUTERS & SECURITY 28 (2009) 260-275

an overview of the implementation of our approach. Section 7
concludes this paper and presents our future work.

2. Related work

Sandhu et al. define a set of RBAC models (Sandhu et al., 1996;
Sandhu et al., 1999). Afterwards, Ferraiolo et al. (2001) propose
the NIST standard of RBAC. Different architectures for RBAC
services on the web are proposed in Park et al. (2001). In these
RBAC models, however, static user-role association is used,
which is tedious to configure every user-role assignment.
Moreover, in the user-role administrative model known as
URA97 of ARBAC97 (Sandhu et al., 1999), multiple steps are
needed to assign a user to a role because the prerequisite
conditions of user-role assignment relations in URA97 are
defined with regular roles, which form a role hierarchy
(Sandhu et al., 1999). As a result, it is difficult to administrate
the policies when the model is deployed in a large enterprise
system because it has many groups or departments.
ARBACO02 (Oh et al., 2006) addresses the multiple user-role
assignments and duplicated information problems by
defining user-role relations based on existing organization
structure information as user pools and permission pools,
such as user’s position from human resource department and
permissions from IT department, instead of the regular roles.
The limitation of this model is that roles in a user pool must
have partial order relation. It results great constraints on user-
role assignment in a situation where there are many diverse
discrete roles. Another weakness in ARBACO2 is that it
requires pre-defined user pools (OS-U) and permission pools
(OS-P), and this introduces complex tasks for administrators.
Nyanchama and Osborn (1999) propose a role graph model
which is equivalent with the role hierarchy in Sandhu’s RBAC
model. Instead of defining explicit user-role assignment rela-
tions, this model also introduces the concept of group to
provide implicit user-role assignment (Nyanchama and
Osborn, 1999; Osborn and Guo, 2000). Actually the group-role
assignment is much similar with user-role assignment in
original RBAC. So this model does not consider the vast
administration tasks for administrators, and does not fully
utilize the components of groups to facilitate administrative
model. In addition, the administration of the role graph model
is centralized, which offers less flexible than our approach. In
GB-RBAC model, the DSet can support batch of user assign-
ments automatically. Superficially, this mechanism is equiv-
alent to that in the group graph model (Osborn and Guo, 2000).
Crampton et al. provide four types of role hierarchy
administration based on a role graph to facilitate role
administration (Crampton and Loizou, 2003; Crampton, 2005).
Koch et al. (2004) extends this work to implement precise
semantics and the systematic verification of constraints.
However, these models heavily rely on the role hierarchy and
focus on graph modification; that is, they do not consider
user-role assignment. Based on Sandhu’s administrative
RBAC model (specifically, URA97 in ARBAC97; Sandhu et al.,
1999), we address more complete decentralize management of
user-role assignment, and our model solves the problem of
access control in group communication applications by
providing two ways of user-role assignments. Moreover, our

model supports autonomy administration which provides an
easy and versatile way for various static and dynamic
assignments.

Basically, the ARBAC97 model (Sandhu et al., 1999) focuses
on a centralized administrative model where a single super
security officer (SSO) defines roles and conducts user-role and
permission-role assignments. The ARBAC02 (Oh et al., 2006)
leverages organization structures in an enterprise to simplify
these tasks. Both models do not solve the problem in decen-
tralized environment where flexible and autonomous autho-
rization managementis desired. Our two-layer administrative
model improves the existing model on this aspect and
provides flexible and scalable management in collaborative
computing environments. Specifically, in system-level
administrators define roles and permission-role assignments,
while group-level administrators assign users roles based on
local group policies. In this way, our model supports fine-
grained administrations according to local administrative
policies, which is referred as administration autonomy,
a fundamental principal for RBAC administration (Sandhu
et al.,, 1999).

Recently, several research efforts have been devoted to the
topic of inter-operation in multi-domain environments (Sha-
fig et al., 2005; Joshi et al., 2004; Piromruen and Joshi, 2005;
Kapadia et al.,, 2000). In (Kapadia et al., 2000), Kapadia et al.
propose a dynamic role translation model, and several secu-
rity issues are provided. Shafiq et al. (2005), Piromruen and
Joshi (2005) and Joshi et al. (2004) propose a series of secure
inter-operation schemes. In (Joshi et al., 2004), Joshi et al.
propose an XML based RBAC to specify multi-domain policies.
In (Shafig et al., 2005; Piromruen and Joshi, 2005), solutions are
proposed based on the Generalized Temporal Role-Based
Access Control Model (GTRBAC). In (Shafiqg et al., 2005), Shafiq
et al. analyze three types of violations when integrating RBAC
policies: user-specific separation of duty (SoD) violation, role-
specific SoD violation, and role-assignment violation. For
example, a role-assignment violation happens when a user of
a domain is allowed to access a role even though the user is
not directly assigned to the role or any of the roles that are
senior to the role in the role hierarchy of the domain. In
addition, Piromruen et al. transform local GTRBAC policy to
facilitate inter-domain operations (Piromruen and Joshi,
2005). These approaches use bottom-up approach to
composite RBAC policies and have to address many problems
when emerging polices, such as role covert promotion® and all
kind of violations above mentioned. Tolone et al. (2005)
discuss access control requirements in collaborative systems
and analyze existing access models including RBAC in
collaborative environments. In our secure collaboration
scheme, we propose a top-bottom approach to merge RBAC
policies of different groups, thus our scheme avoids some
problems introduced in role mapping approaches, such as
role-specific SoD and role-assignment violations. The
component of virtual group is introduced to avoid direct role
mapping. In this way, most of problems mentioned above are
eliminated.

! The covert promotion problem appears when a user crosses
group boundaries and returns to a local group with a role senior
to his original roles in the group (Kapadia et al., 2000).

COMPUTERS & SECURITY 28 (2009) 260-275 263

3. The GB-RBAC model
3.1. Overview of GB-RBAC

The GB-RBAC model proposed in this paper introduces the
concept of group, through which new user-role assignment
mechanisms are built. The essential difference between
groups and roles is that a group is a collection of users who
have the similar security attributes, while a role is a collection
of permissions (Sandhu, 1995)°.

Fig. 1 demonstrates all the components in the GB-RBAC
model and how it works. The users, roles, resources, opera-
tions, and permissions are similar to those in the RBAC96
(Sandhu et al., 1996) model. Typically, permissions associate
operations on resources, and both permissions and users are
assigned to roles. GB-RBAC introduces two new components:
groups and group leaders (administrators). A group, as
mentioned above, is a collection of users and a group
administrator is a user assigned to a group administrative
role. Besides assigning users to roles by system administra-
tors, GB-RBAC supports user-role assignment by group
administrators. In Fig. 1, there are two types of lines: the solid
lines denote associations between components and the
dashed lines denote management on these associations.
Because of the new component of groups, we can easily find
that the dashed lines among the groups, roles, permissions,
and operations are not seen in previous models. Therefore,
two levels of user administrations can be provided by GB-
RBAC. The first is the system-level administration associated
with centralized control over user-role assignment, that is
denotes by the dashed lines whose start point is the node of
the system administrator. The second is the group-level
administration associated with decentralized control over
user-role assignment, which is denoted by the dashed lines
whose start point is the node of group leaders. In the rest of
this paper, the two terms, system-level administrative model
and group-level administrative model, refer respectively to
these two administrative approaches.

3.2. Model description

GB-RBAC incorporates the component of groups into the
RBAC96 (Sandhu et al., 1996) model and provides decentral-
ized role administration. GB-RBAC indirectly imposes access
control on a user’s action after this user is authenticated and
assigned to a set of roles by default. Fig. 2 shows the compo-
nents of a GB-RBAC model. The concepts of users (U), roles (R),
role hierarchy (RH), permissions (P), permission-role assign-
ment (PA), and sessions (S) are identical to the original RBAC96
model (Sandhu et al., 1996). Besides these, GB-RBAC includes
a set of groups (G). Each group is assigned with a set of roles
(group-role assignment or GA). A user can belong to one or
more groups, which is represented as the user-group mapping
(UM). In addition, we propose two layers of roles which are
referred as system-level roles (SR) and group-level roles (GR).

2 Although a role is considered as a set of users and permissions
in RBAC (Sandhu, 1995), for user-role administration purpose, we
consider a role as a set of permissions here.

=}
=
@
=
]
=8
=}
=3
7]

—— =

‘ System Administrator

© Common User ’\:5 RBAC Administrations

(O RBAC Entities

@ Group Leader

Regular Access Flow ==-=--- Administration Flow

Fig. 1 - Overview of a GB-RBAC system.

Role hierarchy relationships (RH) are included in these two
layers of roles like that in RBAC96. As Fig. 2 shows, RH exists in
both level roles in GB-RBAC.

Besides the user-role assignment in system scope which is
similar to the user-role assignment in URA97 (Sandhu et al.,
1999), there is another type of user-role assignment which
happens in group scope. Specifically, as UM associates users
with groups and GA associates roles to groups, a group
administrator can assign a user in UM to a role in GA, which is
called group-level user-role assignment (GUA), while the
original one is called system-level user-role assignment (SUA).
In another word, GUA serves as the mechanism through
which a role can be assigned to a user because the user has
a mappingrelation with a group and the role is assigned to the
group, and then the user holds the permissions to access
resources defined with the role. As Fig. 2 shows, GUA is built
upon the relationship of UM and GA. That is, GUA is only
effective if users are in the context of groups assigned with
roles. Through the mechanism of mapping users to groups
(UM) and assigning role to groups (GA), a new concept of
default group roles set (DSet) is introduced in GB-RBAC, which
indicates the set of roles assigned to a user in a group by
default.

The formal definitions of individual components in GB-
RBAC are defined as follows.

Definition 1. A GB-RBAC model has the
components:

following

- U, P, SR, GR, S, and G (users, permissions, system-level roles,
group-level roles, sessions, and groups, respectively).

- R=SR U GR. For simplicity we assume SR N GR=g in this
paper.

- PA ¢ P x R, a many-to-many permission to role-assignment
relation.

- UM € U x G, a many-to-many user to group mapping rela-
tion. This relation shows that a user can be mapped into
many different groups.

- GA = GxR, a many-to-many group to role-assignment
relation.

264

COMPUTERS & SECURITY 28 (2009) 260-275

PR RN
.* S

CONSTRAINTS

seets s,
et e,

UM: USER MAPPING
GA: GROUP ASSIGNMENT
RH: ROLE HIERARCHY
GUA: Group-level USER
ASSIGNMENT
SUA: System-level USER
ASSIGNMENT
PA: PERMISSION

ASSIGNMENT N
SESSIONS

P
PERMISSIONS

*] CONSTRAINTS

Fig. 2 - GB-RBAC model.

- SUA < U x SR, system-level user-role assignment.

- GUA =€ U x GR, group-level user-role assignment,
(u, 1) € GUA only if ((u, g) € UM) A((g, 1) € GA).

- UA=SUA U GUA, a many-to-many user-role assignment
relation.

- RH € R xR, a partial order on R called the role hierarchy or
role dominance relation. For any two roles r; and r,, 11 > 1,
means that r; has partial relation over r,.

- user: S — U, a function mapping each session s to a single
user. user(s) is constant within s.

- permissions: R — 2%, a function mapping a role to a set of
assigned permissions.

- roles: S — 2%, a function mapping a session to a set of roles,
and roles(s) < {r|(3r' >r)[(user(s), r')e UA]}, which may
change within session s, and session s has the permis-
sions Uy roless){PI(IT” <1)[(p, ") € PA]}

and

Through the concept of group in Definition 1, we introduce
the concept of default group role set (DSet).

Definition 2. The default role set of a group DSet: G — 2% is
asubsetofR,and Vue U,re R, (u, g) e UM ATe DSet(g) — (u,1)
e GUA.

With this approach, a user who is mapped to a group
obtains all the roles in the DSet of the group automatically.

The procedure to determine the permissions of a user in
GB-RBAC is described as follows. When a user logins a system

or starts an application, a session is created and a subset of
the assigned roles of the user is activated. The set of assigned
roles of a user includes the user’s directly assigned roles
(through SUA), the roles in the DSet of the group that the user
is registered, and the roles that are assigned by group-level
administrators (through GUA). The user obtains all the
permissions assigned to these roles through PA. Users can
also change the activated roles in a session within his
assigned roles. The session can be terminated by the user or
by the system, e.g., because of a long idle duration. For
simplicity in this paper we assume that in a single session
a user cannot change his group membership.

In GB-RBAC, we propose two layers of roles through
groups: system-level roles (SR) which work in context of the
overall system and group-level roles (GR) which work in the
context of groups. In this way, besides SR, a user can be
assigned to GR if s/he belongs to some groups. The user
assigned to SR and GR gets different scopes of permissions.
In addition, DSet provided in GB-RBAC enables a new user-
role assignment mechanism to reduce administrative tasks.
In this way, a new member of a group can be assigned
some default roles without administrators’ involvement,
and group administrators can assign other explicit roles to
group members based on roles in DSet. Fig. 3 illustrates
these two mechanisms of user-role assignment. The upper
part indicates SUA, which assigns users to roles directly.
The lower part indicates GUA, where users are mapped to
groups first and then assigned to roles in the corresponding

COMPUTERS & SECURITY 28 (2009) 260-275

265

Users

Permissions

Roles

System-level
User-Role <
Assignment

Group-level
User-Role <

Assignment
User Assignment Permission Assignment
O User ® Role O Group '_—| DSet ~-> User Mapping
--=-+ Group Role Assignment = —— Role Hierarchy --=-» Group-Role Assignment

Fig. 3 - Two-level user-role assignments in GB-RBAC model.

groups. We discuss these user-role administrations in
Section 4.

From the formal description of the model, we can see that
the use of roles in DSet of a group does not take effect when the
roles in the set have no permission assigned. In addition, DSet
or a group can be changed by system or group administrators,
thus affects the overall user-role assignment in GB-RBAC. The
detailed administrative model is described in Section 4.

A GB-RBAC model can also have constraints defined on
many aspects shown in Fig. 2. Besides the constraints on
SUA, PA, RH, and sessions which are similar to those in
RBAC96, GB-RBAC introduces new constraints on UM, GA,
and GUA. This paper does not cover detailed specifications of
constraints.

4, GB-RBAC administrative model

This section first gives an overview of user-role adminis-
tration in GB-RBAC, then describes the formal model, and
then discusses its advantages over traditional administrative
models.

4.1. Overview

The success of an access control system is heavily dependent
upon its administration, especially when the number of users
and roles are on a scale of thousands. Managing access control
components and their inter-relationships is an important and
formidable task. Compared with previous RBAC models, our
model introduces extra administration tasks, such as group-
role assignment and user-group mapping. Two-level admin-
istrative models referred as system-level and group-level

administrative model, respectively, are proposed to manage
the relations defined in GB-RBAC. The administrative model of
user-group mapping (UM) is to classify the users into different
groups and it is the duty of the system-level administrative
model. The group-role assignment (GA) is similar to the user-
role assignment to some extent, which is in charged by
system-level administrators. Besides these, DSet of a group is
another administrative task that can affect the permission
propagation in the model. The management of DSet of a group
can be implemented in both administration levels. However,
we consider it in group-level administration because one of
the motivation of the model is to provide group-level
autonomy administration, such that a group administrator
has the permission to assign users to the roles in the GA
relation.

For these two administration levels, two types of admin-
istrative roles are defined in the administrative model, called
system-level administrative roles (SAR) and group-level
administrative roles (GAR). These administrative roles can
also form role hierarchies, respectively, similar to that of the
regular roles in GB-RBAC. For simplicity we assume that
SARN GAR=g. A user of a system administrative role (or
simply, a system administrator) can assign a user to a group
(through UM), but a user of a group administrative role (or
simply, a group administrator) can determine which role the
user can be assigned to. In this way, a type of separation of
duty in different levels of administration is provided. In
addition, UM can be managed by an administrative model
simpler than GA, and it does not add much complexity into
the administrative model of GB-RBAC.

As Fig. 4 shows, a two-level administrative model referred
as system-level and group-level administrations, respectively,
is proposed to address all kinds of components defined in the

266

COMPUTERS & SECURITY 28 (2009) 260-275

Group-level
Administration

PREREQUISITE
CONDITIONS

P
PERMISSIONS

System-level
Administration

Fig. 4 - GB-RBAC administrative model.

GB-RBAC. Our administrative model discussed in this paper
focuses on user-role assignment, which addresses the
management the following components in GB-RBAC: GA, UM,
SUA, GUA, and DSet. Specifically, system-level administrative
model has three types of controls enforced on GA, UM, SUA,
respectively, while group-level administrative model has two
types of controls enforced on GUA and DSet, respectively. Note
that we do not address the administration of UA since it can be
implemented by the administration of SUA and GUA through
Definition 1. Also note that as the control on DSet of a group
defines the default role set of the group members, it implicitly
manages the user-role assignment. For example, in
a temporal group telephone conference, a role with common
permission of connecting the virtual conference room is
defined in the DSet, which is assigned to all users in the group
by default. As a group’s DSet is very application-specific, we do
not explicitly define the rules to manage DSet in this paper.

Different layers of administrations provide an autonomy
mechanism such that local administrators of a group can
assign a member of the group to different roles if some
assignment conditions are satisfied (introduced shortly). It is
another flexibility to administrate UA besides the mechanism
provided by DSet to deduce administrative tasks in first level
administrative model.

Different level administrative models have different
responsibilities: administration of GB-RBAC components with
centralized control over users is in the system-level admin-
istrative model, and administration in the group view is in the
group-level administrative model. Fig. 4 shows the scope of
these two-level administrations. The system level model
operates in the system scope to assign/revoke system-level
roles to/from users, assign/revoke group-level roles to/from
groups, and map/unmap user to/from groups, while the group
level model operates in the group scope to assign/revoke roles
to/from users, including defining roles in DSet. For sake of
simplicity we do not consider administrations of permissions
and role hierarchy in this paper.

4.2. GB-RBAC grant model

The grant model defines policies or rules authorizing
administrators to assign users to roles and groups. Before
explaining the details of these rules, the notions of pre-
requisite conditions in different types of assignments are
introduced.

4.2.1. User and group prerequisite conditions

Definition 3. A user prerequisite condition is a boolean
expression using the usual A and V operators on terms of the
form x and %, where x is a regular role (i.e., xe R) or a group
(i.e.,xe G). A prerequisite condition is evaluated for a user u by
interpreting x to be true if any of the follows is true:

- ifxe R, AX' >x, (u, X) e UA;
- ifxe G, (u, x) e UM.

and interpreting X to be true if any of the follows is true:

- ifxe R, VX' >x, (u, X) & UA;
- ifxe G, (u, x) & UM.

For a given set of roles R and G, let CR, denote all possible
user prerequisite conditions that can be formed.

A user prerequisite condition tests a user’s memberships/
nonmemberships of roles and groups. As the membership of
a role tests both SUA and GUA, the prerequisite condition
defined above is at least as expressive as that in URA97
(Sandhu et al., 1999).

Definition 4. A group prerequisite condition is a boolean
expression using the usual A and V operators on terms of the
form x and X, where x is a regular role (i.e., xe R). A prereg-
uisite condition is evaluated for a group g by interpreting x to

COMPUTERS & SECURITY 28 (2009) 260-275 267

be true if 3%’ > x, (g, X') € GA, and interpreting X to be true if
VX' >x,(g,x') & GA. For a given set of roles R, let CR; denote all
possible group prerequisite conditions that can be formed.

A group prerequisite condition checks GA relation to test
the memberships/nonmemberships of a group, which is used
in the administration of group-role assignment.

4.2.2. User-role assignment
Authorizations on user-role assignment of GB-RBAC are
controlled by a set of rules.

Definition 5. In system-level administrative grant model,

- user-role assignment in SUA is controlled by means of the
relation can_assign_SUA < SAR x CR, x 2~

- user-group mapping in UM is controlled by means of the
relation can_assign_UM < SAR x CR, x 2€.

- group-role assignment in GA is controlled by means of the
relation can_assign_GA < SAR x CRg x 2.

Definition 6. In group-level administrative grant model,

- user-role assignment in GUA is controlled by the relation
can_assign_GUA < GAR x CR, x 2%,

Specifically, a relation in above two definitions has three
parameters (x, y, {z}), which means that a member of x can
assign a user/group to be a member of a role in role range {z} if
the user/group satisfles the corresponding prerequisite
condition y. Specifically, a relation can_assign_SUA(x, y, {z}) or
can_assign_GUA(x, y, {z}) means that a member of the system
or group administrative role x (or an administrative role senior
to x) can assign a user to be a member of a role in role range {z}
if the user satisfies the prerequisite condition y; a relation
can_assign_UM(x, y, {z}) means that a member of the system
administrative role x (or an administrative role senior to x) can
assign a user to be a member of a group in {z} if the user
satisfies the prerequisite conditions y; and a relation can_
assign_GA(x, y, {z]) means that a member of the system
administrative role x (or an administrative role senior to x) can
assign a group to a role in role range {z} if the group satisfies
the prerequisite conditions y. Note that in a GB-RBAC model,
users (e.g., user accounts), roles and permissions are created
by the system administrators,® and group administrators can
manage their relations in the group level.

As illustrated in the lower part of Fig. 3, the blank circles in
roles column denote administrative roles and the solid circles
in roles column denote common roles. If a user in a group is
assigned to an administrative role, s/he can assign roles to the
members of the group after successful testing of the prereg-
uisite condition. In this way, members of the group can be
assigned proper roles through GUA. In addition, the upper part
of Fig. 3 illustrates another user-role assignment mechanism
that a user also can be assigned roles through SUA.

% Note that the administrative model introduced in this paper
does not include corresponding rules to create users, roles, and
permissions, as well as role hierarchy administrations.

Table 1 - Administration control rules.

Type Admin. Rrereq. Group/Role
Role Condition Range
can_assign_SUA E-SSO resAA resAD
can_assign_UM E-SSO resAA {@PRO1}
can_assign_GUA ~ PM @PRO1 A QE1 {PE1}

As an example, consider a set of administration rules
defined in the organization as Table 1 shows. We putan “@” in
front of the group names to distinguish with role names.
A group (PRO1) is created to develop a group level adminis-
trative domain. Roles are created as shown in Fig. 5. The part
above the dashed line presents system-level roles, while the
part below the dashed line presents group-level roles. These
two levels of roles both contain two types of roles: normal
roles such as resAA (resource A access) in the system-level
roles and PL1 in the group-level roles, and administrative roles
such as S-SSO in the system-level roles and GD in the group-
level roles. Role hierarchies also exist among these roles. For
example, there is a role hierarchy between the two system-
level roles: a junior-most role resAA and a senior-most role
resAO (resource A owner). Between them, there are two other
incomparable roles, resAD (resource A dissemination) and
resAM (resource A modification).

System-level role assignment is similar to that in URA97
(Sandhuetal., 1999). For example, if Alice is a member of E-SSO
and Bob is a member of resAA, she can assign Bob to role
resAD, according to the first rule in Table 1. At the same time,
according to the second rule, Alice can assign Bob to group
PRO1. Now we consider administration in the group level. We
assume Carol is a member of PM and Bob is a member of group
PRO1. Carol can assign Bob to PE1 if Bob is not a member of QE1,
according to can_assign_GUA(PM,@PRO1 AQET, {PE1}).

Note that in GB-RBAC, mapping roles to groups (that is, to
define GA) is typically very application-specific. Our administra-
tive model does notinclude rules for this purpose. For example, in
Fig. 5 we assume that the roles in PRO1 are pre-defined.

An assumption in our administrative model is that
a system administrator is trusted not to assign roles to con-
flicting groups. For example, in above case, as role range [ER1,
PL1] has been assigned to group PRO1, Alice and other
administrators should not assign any of the role in this range
to other group* (say PRO2), otherwise a user from PRO2 can
have permissions in PRO1, e.g., to read/write sensitive data,
which is not allowed in general. This assumption is also used
in traditional RBAC administrative models, e.g., administra-
tors are trusted not to assign two conflict roles to a single user.
Constraints can be defined to restrict the permissions of
administrators, which are not covered in this paper.

4.3. GB-RBAC revocation model

The revocation rules in GB-RBAC are controlled by can_revoke
relations.

* In this paper we do not consider group hierarchy in the model.
If a group belongs to another group, then a role can be assigned to
both of them.

268 COMPUTERS & SECURITY 28 (2009) 260-275

resA Owner Senior SSO
(resAO) (S-SS0O)
resA resA
Dissemination Modification
(resAD) (resAM)
\ / Engineering SSO
resA Access (E-SSO)

System Level Role (resAA)

s mm— e % mmmm s e emmm s s . e s mmm s o mmm f W, e @ . s 5 Emm. f S e ¢ . > em—

Group Level Role

Group PRO1

Project Leader 1 Group
(PL1) Director
/ \ (GD)
Production Quality
Engineer 1 Engineer 1
(PE1) (QE1D)
\ / Production Quality
Engineer 1 Manager Manager
(ER1) (PM) QM)

SIPRECT>

Group PRO2 Group PRO3

Fig. 5 - Example: different levels of roles in GB-RBAC.

Definition 7. In system-level administrative revocation

model,

- user-role revocation in SUA is controlled by means of the
relation can_revoke_SUA < SAR x 2%,

- user-group unmapping in UM is controlled by means of the
relation can_revoke_ UM < SAR x 2°.

- group-role revocation in GA is controlled by means of the
relation can_revoke_GA = SAR x 2&,

Definition 8. In group-level administrative revocation model,

- user-role revocation in GUA is controlled according to the
relation can_revoke_GUA < GAR x 2%,

Specifically, a relation can_revoke(x, {z}) specifies that an
administrative member of role x can revoke a user or a group
from a role or group in {z}. Similar to that in URA97 (Sandhu
et al., 1999), the user-role revocation model (in both system-

level or group-level) of GB-RBAC has two types of operations:
weak revocation and strong revocation. Specifically, for (u,
r)e UA, a weak revocation on it has no effect if u is not
explicitly assigned to r, that is, there exists ' <r such that (u,
r') e UA; while a strong revocation on (u, r) tries to do weak
revocation on (u, r') for every r’ >r, where (u, r') is an explicit
assignment.

Let us consider a set of revocation rules in Table 2 and
interpret it in the context of Fig. 5. Let Alice be a member of E-
SSO, and Bob a member of resAD. Consider Alice try to revoke
membership of Bob from role resAA: with weak revocation,
this has no effect since Bob is still a member of resAD; while
with the strong revocation, Alice can revoke Bob from resAA
according to the first rule in Table 2. Now we consider revo-
cations in group level. Let Alice be a member of E-SSO, and Bob
a member of group PRO1 and role PE1. With rule can_revo-
ke_UM(E-SSO,@PRO1), Alice is authorized to revoke the
membership of Bob from group PRO1. With weak revocation,
this has no effect since Bob is still a member of PE1. But this
revocation prevents Bob from being assigned to other roles in

COMPUTERS & SECURITY 28 (2009) 260-275 269

Table 2 - Revocation control rules.

Type Admin. Role Group/Role Range
can_revoke_SUA E-SSO [resAA, resAD]
can_revoke_UM E-SSO {@PRO1}
can_revoke_GUA PM (ER1, PL1)

the group, such as to PL1 by GD (refer to Table 1). A strong
revocation from Bob’s membership of PRO1 revokes Bob’s all
memberships of roles in PRO1. Within group PRO1, rule can_-
revoke_GUA(PM, (ER1,PL1)) indicates that Carol who is
a member of PM can revoke Bob from PE1.

4.4, Discussion

GB-RBAC and its administrative model are the fundamental
work for our secure collaboration scheme shown in next
section. We summary the main advantages of our approach
by comparing it with ARBAC97 as follows.

(i) Simplified User-role Assignment for System Administrators In
our model, an administrator only needs to assign a user to
a group and specify the role range of a group. After that,
group administrators take charge of the user-role
assignment in this role range. This significantly simplifies
the management task by delegating administrative
permissions from centralized system-level administra-
tors to decentralized group-level administrators, espe-
cially for dynamic and ad-hoc group-based applications.
In contrast, in ARBAC97, when a new project or a new
department is introduced in the system, a set of roles are
created and corresponding rules have to be defined to
manage it. But in our administrative model, a system
administrator only needs to create a group and user-
group mapping relation, the other assignment can be
managed by the group-level administrators locally.

Flexible Administration for Dynamic User-role Assignment
Group-level administration can easily support dynamic
user participation in group-based applications. For
example, consider a voice-over-IP (VoIP) conference is to
be held within group PRO1 in Fig. 5. Based on the
permissions illustrated in Table 3, the members of PL1,
PE1, QE1 and ER1 can join this conference, and the
members of PL1, PE1 and QE1 can speak in the conference,
and only the members of PL1 can host this conference.
During a conference users can join and leave. With purely
system-level administration, it is tedious to do the
dynamic user-role assignment, while it is very efficient

(i

=

Table 3 - Example of role assignment.

Role Permissions Role Permissions

PL1 confl_host PL2 conf2_host

PE1 confl_speak (P1) PE2 conf2_speak
progl_upload (P2) prog2_upload

QE1 confl_speak QE2 conf2_speak (P3)
progl_report prog2_report (P4)

ER1 confl_join ER2 conf2_join

with group-level administration. For example, according
to the group-level administrative rule in Table 2, any
member of PM can administrate user-role assignment in
this group.

(iii) Fine-grained User-role Assignment By enabling GUA, our
model supports user-role assignment in the group level.
Typically, a group administrator has more contextual
information about the permissions and sensitive opera-
tions in the group and the users’ skills, thus user-role
assignment in this level provides fine-grained user
management and less risk of authorizations (Nissanke
and Khayat, 2004).

(iv) Tunable Group-level Administrations A system-level
administrator can change the role assignment of a group,
and thus change the roles that a group administrator can
assign users to. For example, with the rules in Tables 1
and 2, Alice can change PRO1’s memberships of roles
from [ER1, PL1] to [ER1, PL1) by revoking (PRO1, PL1) from
GA. This greatly provides flexible and controlled group-
level administrative permissions.

5. Supporting Ad-hoc collaborations with
GB-RBAC

This section first identifies the generic access control
requirements for ad-hoc collaborations, and then presents our
solution with GB-RBAC and proposes algorithms to build
group-level roles and their permission assignments.

5.1. Ad-hoc collaboration scheme

We first identify two important features of ad-hoc collabora-
tions which determine access control requirements. In this
paper, a group identifies an autonomous control domain.
A collaboration scheme should enable management autonomy
inindividual groups and information exchangeability between
groups.

Previous work result in many violations/conflicts (Shafiq
et al., 2005; Kapadia et al., 2000) when a collaboration between
different groups happens. Most of previous work implement
collaborative through direct role mapping relations between
groups, where violations or problems happen such as user-
specific SoD violation, role-specific SoD violation, role-
assignment violation (Shafiq et al., 2005), and role promotion
(Kapadia et al., 2000). In our work, we propose the concept of
virtual group. Roles involved in a collaboration are exported into
a virtual group from their original (source) groups. In this way,
most of violations/problems are solved such as SoD violations
mentioned above, and constraints such as induced SoD (Shafiq
et al., 2005) are eliminated at user-role assignment stage.

In order to support ad-hoc collaboration with GB-RBAC, we
propose a special group: virtual group (VG). A VG has the
similar features as common groups except that it only
contains group-level components (roles and permissions)
exported from collaborating groups. Fig. 6 illustrates applica-
tion of a VG.

For a collaboration between several collaborative groups,
the building procedure is briefly implemented as following
steps: 1) A collaboration request is sent to collaborative groups

270

COMPUTERS & SECURITY 28 (2009) 260-275

~

Group PRO1

Group-level
Role

Set of roles \\
exported to VG \\

ED

System-level
Role

resAA

N

Group PRO2
Group-level

Role

~ X
7 Setofroles

7 exported to VG

e

PD

&

Virtual Group (VG)

Fig. 6 - Collaboration between groups with GB-RBAC.

by an administrator of an initial group (called the VG founder),
and the response is sent back to the founder. 2) Upon request,
administrators of all collaborative groups build VG using
ColGrant Algorithm. In ColGrant algorithm, roles and
permissions from collaborative groups are exported into VG
based on collaboration policies. 3) VG administrators are
elected from the collaborative group administrators. For
simplicity, in this paper we assume that all the collaborative
group administrators are the VG’s administrators. 4) User-role
assignment can be performed by the VG administrators by the
user-role administrative model in Section 4. 5) All the
members of VG can start the collaborative work, and some
collaboration modification can be realized using ColUpdate
Algorithm. In ColUpdate algorithm, roles and permissions in
VG are updated to meet requirements of changed collabora-
tion polices. 6) The collaborative work finishes, and the
administrators of collaborative groups who leave the VG last
destroy the VG with ColRevo algorithm. In ColRevo algorithm,
roles and permissions are revoked from VG.

In Fig. 6, PRO1 exports {ER1, PE1, QE1, PL1} to VG, and PRO2
exports {ER2, PE2, PL2} to VG. In this way, VG contains roles
{ER1, ER2, PE1, QE1, PE2, PL1, PL2} and corresponding permis-
sions. In this way, all members assigned to roles in VG can act
as appropriate roles in collaborative work, no matter where
the roles come from originally.

Before defining the three algorithms for the basic opera-
tions in a collaboration, we give the definition of role conflict
which may exist when exporting roles in different groups to
a VG, and the definition of role naming mechanism which is
used to solve conflictions.

5.2. Role conflicts

In our collaboration scheme, we consider two type of conflicts:
name conflicts and role conflicts. A name conflict happens
when exporting a role into a VG which has the same name of
another role in the VG. Role conflict is an advanced concept
and has the following definition.

Definition 9. Roler;jconflicts withr;in avirtual group VGif 3p1,
P2, p3, p4e P, (pl, p2) < permissions(r;) A (p3, p4) S permis-
sions(r;) Alinked(r;, VGy) A -linked(rj, VG) A < (p1, p3) A < (P2,
p4), where linked(r, VG) is a predicate that tests whether r
has been exported into VG, and < denotes that two permis-
sions can be obtained by a user through role r; and r;
simultaneously.

A role conflict between r; (in a VG) and r; (not in VG)
happens if there exist two permissions from r; and r; that
can be obtained by a user while there are other two
permissions that cannot be obtained by the user simulta-
neously, e.g., according to pre-defined SoD constraints. We
say that r; is a conflicting role for VG. For example, as illus-
trated in Fig. 7(c), P1 and P2 are permissions contained in
role QE2, P3 and P4 are contained in role PE1 (The details of
permission can be found in Table 3). Although P1(confl_
speak) and P3(conf2_speak) can be simultaneously achieved
by a user (that is, the user can speak both at conference 1
and conference 2), P2 and P4 must be exclusively achieved
by the user because the user should not simultaneously
have the permissions to perform the programl upload
operation and program? report operation, according to the
organization’s policy. Based on Definition 9, there exists
role conflict between these roles.

If a role conflict exists, we need split role r; into two parts,
e.g., by creating two roles and assigning P2 and P4 of QE2 to
these two roles, respectively. In order to simplify role collab-
oration scheme, a naming mechanism is defined as follows.

Definition 10. When exporting the components of a collabo-
rative group into a virtual group,

- if a name conflict exists, the new name of the exporting role
is its original name plus the collaborative group name;

- if a role conflict exists, the new name of the conflicting role
is its original name plus the serial number of every part after
dividing the role.

COMPUTERS & SECURITY 28 (2009) 260-275 271

a

Virtual Group .~~~
I\ QE2 /’"

Virtual Group SN Group PRO2
\ QE2 e e e e el
N__/

Portial Export

Group PRO2

Export in Presence of Role Conflict

Fig. 7 - Role export scheme in GB-RBAC.

For example, if a name conflict exists when QE1 from PRO1
is exported into VG, we name the role QE1PRO1. If a role
conflict exists, we divide a conflicting role into two parts. For
example, in Fig. 7(c), QE2 conflicts with PE1 which is already
export to VG. Now we split QE2 and the name of every part of
QE2 is named as QE21 and QE22.

In general, we consider three cases when roles and
permissions are exported:

(1) Roles which can be directly exported into VG;

(2) Roles which can be partly exported into VG; That is, the
subset of permissions obtained by the roles can be
exported.

(3) Roles which should be wholly exported into VG. However,
some of them conflict with existing roles in VG, and the set
of permissions obtained by these roles should be exported
individually.

Fig. 7 illustrates the scenario where QE2 of PRO2 is exported
to VG in different cases. In the first case, we simply export all
permissions of QE2 to VG, and we can also directly export QE2.
In the second case, only subset of permissions of QE2 can be
exported to VG. Specifically, we split the permissions of QE2,
and export the part with permission P1 to VG. In the third case,
QE2 and PE1 conflict in VG. We split the permissions of QE2
into subsets P1 and P2, create two new roles QE21 and QE22,
and assigned with P1 and P2, respectively. After that, QE21 and
QE22 are be exported to VG, respectively, and P1 and P2 can
also be exported to VG.

All users and permissions in a virtual group do not contain
any genuine information. Actually, they are only link infor-
mation which denotes which component comes from which
group. However, a role in a virtual group is assigned with
permissions of its linked role. The names of the components
in virtual group directly use or derive from those of the orig-
inal components of collaborative groups.

5.3. Operations for collaboration

With defined mechanisms to resolve role collaborations, we
present the three algorithms which are used to build a virtual
group, update the components of a virtual group, and destroy
a virtual group, respectively. After a virtual group is estab-
lished, assigning users to roles in the group can be performed
by the group administrators following the user-role adminis-
trative model presented in Section 4. So in this section we
focus on the details of exportation of roles and permissions.
ColGrant algorithm shown in Fig. 8 describes the main
steps to build a virtual group among collaborative groups. In
the process of collaboration building, one of the administra-
tors® from the VG founder group creates a virtual group name
with the necessary parameters, including the names of other
collaborative groups. The algorithms starts by exporting the
founder group’s roles and permissions to the VG. Two cases
are considered here: If all permissions included in the group
roles need to be exported, the administrator directly exports
the roles and the corresponding permissions by using role-link
(r, VGy) function; If only a subset of the permissions need to be
exported, the algorithm first creates a role link in the context
of the virtual group using createrole function, and then fetches
permissions included in the roles of the group. Through
insert(r, p) function, the links of the corresponding permis-
sions are added into r if the test succeeds in the exportable
permissions using export-permission function. If all the
permissions are inserted into the new role link, the link is
attached to VG through link-role function. After that, the
algorithm achieves the updated DSet and assigns users to the
virtual group. This process makes sure that the virtual group is
created and the components of the initial group is exported
to the virtual group. Following the similar process, the

° The capability to initialize a collaboration is a group-level
administrative permission, which is not specified in this paper.

272 COMPUTERS & SECURITY 28 (2009) 260-275

ColGrant Algorithm

1) DSettmp «— Gg.DSet

2) ifVGy =g

3) VGy « creategroup()

4) VGy = createVG();

5) for each role r; € Gz.Rset

6) if all-export(permissions(r;))

7 role-link(r;,VGy)

8) else if part-export(permissions(r;))

9) Tnew < createrole()

10) for each p; € permissions (r)

11) if export-permissions(p;)

12) insert(p;,rnew)

13) link-role(rnew,VGy)

14) if r; €Gz.DSet

15) DSettmp «—DSettmpUrnew - i

16) VGy.DSet < VG,.DSet U DSetimyp

17) else

18) for each role r; €G;.Rset

19) if name-conflict(r;,VGy)

20) r; < name-change(r;)

21)-30) similar with step 6)-15), we do not repeat it again
31) else if permission-conflict(r;, VGy)

32) permissionscon «— conflict-permissions(r;, VGy)
33) I'mew “— createrole()

34) if export-permissions(permissionscon)
35) insert(permissionscon ,rnew)

36) insert(permissions(r;)-permissionscon, I'res)
37) link-role(rnew,VGy)

38) link-role(rcon, VGy)

39) if r; € G;.DSet

40) DSetimp «— DSetimpU rnewU Ires - 15

41) VGy.DSet «— VG, .DSet U DSetimp

Fig. 8 - ColGrant algorithm.

administrators of other participant group can export neces-
sary roles and permissions to the virtual group. In each step
we check whether roles in the original group have identical
names with those in the virtual group. If there is any role
name conflict, we change the role name using name-change
function and use the modified name as the name of role link.
Now we consider the three cases aforementioned and export
roles in a sound way. We have already mentioned the first two
cases in the first step. In the third case, we create two new role
links using createrole function and insert the links of the
permissions into the corresponding role links. After attaching
the two role links to VG, we evaluate DSet of the virtual group,
which is the union of DSets of all the collaborative groups.
Now we consider some examples about ColGrant algo-
rithm with Fig. 7. In the first state, we assume that the
administrator of PRO1 creates the virtual group (VG), and
exports all the roles of ER1, PE1, QE1l and PL1 and corre-
sponding permissions to VG. Because we achieve the
permissions of roles through permissions(r), these exporting
procedures are implemented by the role-link function. We
assume that DSet in PRO1 is {ER1}, and we unite this set into
DSet of VG. So DSet of VG is {ER1}. In the second stage, PRO2
starts to join VG using the algorithm. Because there exist no
name conflict and role conflict with the roles in current VG, we
directly export the roles {ER2, PE2, PL2} and corresponding
permissions to VG. We assume that DSet of PRO2 is {ER2, PE2},

and we also unite this set into DSet of VG and the value of DSet
is {ER1, ER2, PE2}. With these steps, a simple process of virtual
group building is finished. The administrators of PRO1 and
PRO2 become the administrators of the virtual group, and
these administrators can assign roles to users through can_
assign_GUA in group level administrative model discussed in
Section 4. In this way, the users in the virtual group can be
authorized with permissions and start the collaborative work
with each other.

Algorithms ColUpdate (see Fig. 9) and ColRevo (see Fig. 10)
are used to update the components of a virtual group and
delete a virtual group, respectively. Because the process to
add/delete a component into/from a virtual group is similar to
that in ColGrant, we do not present these issues in the
ColUpdate algorithm. In ColUpdate algorithm, we use a flag to
distinguish the different cases of role export. If the permis-
sions of a role are updated, e.g., in its original group, we unlink
the role and re-export the updated role in a virtual group. In
the ColRevo algorithm, we also need a flag to distinguish the
three different cases. If a role is directly exported into a virtual
group, we delete the role link. However, if the role is split into

ColUpdate Algorithm
1) if action = add

2) similar with ColGrant Algorithm

3) else if action = del

4) similar with ColRevo Algorithm

5) else if action = mod

6) Initial Flag <« 0;

7) if Go.Rset # 0

8) for each role r; €Gz.Raset

9) r¢ < name-change(r;)

13) if FindRole(r¢) = false

14) R

15) if FindRole(r¢) = false

16) Flag <« 1

17) else

18) I'new, I'res < name-tranform(r¢)

19) Flag « 2

20) if permission-conflict(rs, VGy)

21) permissionscon <— conflict-permissions(r¢, VGy)

22) if Flag = 2

23) permission-update(rpew,permissionscon)

24) permission-update(rres,
permissions(r;)-permissionscon)

25) else

26) role-unlink(r¢,VGy)

27) I'mew «— createrole()

28) insert(permissionscon,I'new)

29) insert(permissions(r;)- permissionscon, I'res)

30) if (export-permissions(permissionscon,)

31) link-role(rnew,VGy)

32) link-role(rcon, VGy)

33) else

34) if Flag = 2

35) role-unlink(rnew,VGy)

36) role-unlink(rres,VGy)

37) role-link(r¢,VGy)

38) else

39) permission-update(r¢,permissions(r))

40) if r €G;.DSet

41) update the role name in Gz.DSet

42) update VGy.DSet using G;.DSet

Fig. 9 - ColUpdate algorithm.

COMPUTERS & SECURITY 28 (2009) 260-275 273

ColRevo Algorithm

1) Gz-Rset 7é []

2) for each role r; €ERset

3) I'tmp < name-change(r)

7) if FindRole(r;) = false

8) Ttmp < Ij

9) if FindRole(r;) = false

10) Flag — 1

11) else if

12) Tnew, I'res < name-trnaform(r)
13) Flag — 2

14) if Flag = 2

15) role-unlink(rnew,VGy)

16) role-unlink(rres,VGy)

17) else

18) role-unlink(r¢myp, VGy)

19) if users(VGy) = oA roles=(VGy) = o
20) deleteVG()

Fig. 10 — ColRevo algorithm.

two roles when exported to the virtual group, we should
transform the role name and delete the role links. If there
exists no component in a virtual group, it can be destroyed.
Again, revoking users from the roles in a virtual group is
ignored here.

Note that a role link in a VG should be deleted and the role
should be re-exported when the role export case are different
in the different stages in the process of ColUpdate. For
example, we should consider the case that the permissions of
a role are entirely exported into VG and role conflicts happen
in ColUpdate.

6. Prototype implementation and evaluation

To show the feasibility and performance of our approach, we
implement a prototype system by enhancing the extensible
access control markup language (XACML) with GB-RBAC
model. This Section first gives an overview of our prototype
and then presents some results of performance study.

6.1. Policy specification

Our prototype uses the extensible access control markup
language (XACML) to specify GB-RBAC policies. XACML is an
open-standard format to specify access control policies, and
expected to be widely used with the properties of interpret-
ability and extensibility. Using the Sun’s XACML library, the
Policy Decision Point (PDP) module interprets XACML policies
and makes access decisions.

In our prototype, both permission-role and user-role poli-
cies are located in an authorization service platform. Fig. 11
shows the skeleton of two sample policies of them, respec-
tively. In these two policies, PRO1_host is a role name in PRO1.
The first policy states that this role has the permission to host
in the group PRO1 only when no user acts as host of PRO1 or
the user has the same group (PRO1) id as that of users who are
authorized as PRO1_host at the same time, which is specified
by Domain 1. The second policy states that the user whose

<PolicySet PolicySetId="Domainl:Role:Permission">

<Subjects>...urn:mynamespace:role:PRO1_host...</subjects>

<Resources> ... invite_speaker ... </Resources>
<Actions> ... PRO1 ... </Actions>
<Condition>

<EnvironmentAttributeDesigner AttributeID="group-id"/>
<AttributeVaule>equal</AttributeValue>
</Condition>

</PolicySet>

<PolicySet PolicySetId="PRO1:User:Role">

<Subjects>
<SubjectMatch>Alice</SubjectMatch>
<SubjectMatch>urn:mynamespace:group:PRO1</SubjectMatch>
</Subjects>
<Resources>...urn:mynamespace:role:PRO1_host...</Resources>
<Actions> ... membership ... </Action>

<Condition>

<EnvironmentAttributeDesigner AttributeID="time"/>
<AttributeVaule>9AM</AttributeValue>

<EnvironmentAttributeDesigner AttributeID="time"/>
<AttributeVaule>7PM</AttributeValue>

</Condition>
<PolicySet>

Fig. 11 - Policies for permission-role and user-role
assignments in prototype.

name is Alice within group RPO1 is assigned with role
PRO1_host only during the hours 9AM to 7PM, which is spec-
ified by PRO1. The net effect of these two policies specifies the
user whose name is Alice within PRO1 has permission to
invite speaker in PRO1 on Domain 1 only during 9AM to 7PM if
no user acts as host of PRO1 or the user has the same group
(PRO1) id as that of users who are authorized as PRO1_host.

6.2. Performance evaluation

As a GB-RBAC decision is determined by verifying subject
(requesting user) credentials, objects (resources) and actions,
the performance of GB-RBAC policy process should be
considered. Firstly, we evaluate the overhead introduced by
decentralized administration compared to original XACML
with RBAC profile. Secondly, we evaluate the performance
when user authorization is performed based on the dynamic
generated VG policies.

In our experiment, permission requests are generated in
application service platforms and sent to authorization server
which is in Java 1.4.2 and working in Windows XP machine
with Pentium M 1.7 GHz and 512 MB memory. Fig. 12 shows
the performance of per-authorization request with original
XACML specified by the RBAC profile and enhance XACML
with the GB-RBAC profile. The time of policy process with
RBAC ranges from Ous to 16us, and the process time of per-
authorization with enhanced XACML specified by the GB-
RBAC profile ranges from Ous to 47us. The average policy
process time for per-authorization with RBAC policies is about
7.92us and the average time with GB-RBAC is about 9.95us,

274 COMPUTERS & SECURITY 28 (2009) 260-275

Performance of policy process with GB-RBAC

50 T T T T T

45 B
40 - XACML with RBAC —— -+
15 XACML with GB-RBAC —X—

Time (us)

Group (#number)

Fig. 12 - Performance of policy process with 60 group
members.

which implies that our decentralized access control mecha-
nism introduces about 25% extra overhead. As user authori-
zation is a one-time operation when the authorization request
is generated from application servers, this performance
overhead introduced by decentralized RBAC administration is
reasonable.

We further study the performance of ad-hoc collabora-
tions. Fig. 13 illustrates the results of the performance of
policy process without VG, with 1 VG and with 60 VGs,
respectively. The authorization operation is conducted as
follows: policy process without VG evaluates the policy based
on static GB-RBAC policy defined in Fig. 11 and is to authorize
concurrent requests for 60 group members from the specified
group; policy process with 1 VG evaluates the policy which is
dynamically generated for VG1 based on the policy specified in
Fig. 11 and is to authorize concurrent requests for 60 group
members from VG1; policy process with 60 VGs evaluates the
policy which is dynamically generated for 60 VGs named from
VG1 to VG60 and is to authorize concurrent requests for 60
members from 60 different virtual groups. For simplicity but
without loss of generality, we only generate same GB-RBAC

70

Performance of policy process with collaboration
T T T T

T
XACML with non-VG —+—
60 XACML with 1 VG —%— |
XACML with 60 VGs —K—

Time (us)

Group (#number)

Fig. 13 - Performance of policy process with/without VG.

rules for every group members in VG and the VG policies are
only generated from a static group policy, which is triggered
by the administrators of different source groups. As shown in
Fig. 13, the process time with generation of 1 VG is about 20us
and average process time for per user authorization is 10.13us,
which only introduces less than 1% overhead compared to
that without VG generation. The user authorization time with
generation of 60 different VGs is about 34.36us. As VG policy
generation is only invoked by the first VG users (the admin-
istrators of VGs), and it will not introduce overhead into
authorization of group members. Moreover, as we mentioned
above, in most real world applications, access control is only
checked once during a type of continuous operations. For
example, reading a batch of files from a directory only checks
if the user has the permission to read the directory at the
beginning. Therefore we believe that the authorization
performance is acceptable for securing typical distributed
systems.

7. Conclusion and future work

In this paper, we present an advanced RBAC model called GB-
RBAC for secure collaborations and its user-role administra-
tion. The main advantage of the model is convenience and
flexibility for administration under large-scale environments.
Our model does not need to be used in a highly central
controlled environment, and provides two levels of adminis-
trative models for user-role assignment and reduces the
complexity of the administration of RBAC systems. Moreover,
user-role assignment in the group-level administrative model
provides a flexible way to meet the requirements of group-
level collaboration, i.e., users from different groups form
a virtual group for communication. In addition, we propose an
ad-hoc collaboration scheme in multi-group environment
based on the GB-RBAC model. The scheme proposes
a component of virtual group to enable secure collaborations
between different groups. We present three algorithms to
transform components from collaborative groups to virtual
groups and allow them to access shared resources and infor-
mation. In this way, our scheme provides a secure and easy
solution to support ad-hoc collaborations. We implement
a prototype with SunXACML and our experimental results
demonstrate the efficiency and scalability of our authoriza-
tion approach.

Several aspects need further study in our scheme. First of
all, constraints for a virtual group need to be explored. We are
going to provide an improved group-role assignment mecha-
nism in which general constraints on group level can be
supported. Especially, the proposed scheme needs to be
extended to integrate advanced mechanisms and constraints
to facilitate overall policy administration. Second, as the
administrative model we proposed in this paper focuses on
user-role administration, we are going to develop the group-
level permission-role and role-role management for GB-RBAC.
An integrated model that incorporates the permission pool
(Oh et al., 2006) mechanism will be developed in the future.
Based on the GB-RBAC model, small permission pools can be
implemented in the group-level administrative model to
provide a more flexible scheme for secure collaborations. Our

COMPUTERS & SECURITY 28 (2009) 260-275 275

collaborative scheme requires collaborative parties have
RBAC policies, which may not be always true in real applica-
tion scenarios. However, as RBAC becomes standard (Ferraiolo
et al.,, 2001; ANSI, 2004) and more and more organizations and
systems adopt RBAC policy models, we believe our approach is
applicable in many collaborations. We will fully explore some
other issues in collaborations along with our model, such as
policy conflicts and permission constraints between collabo-
rative parties.

Acknowledgements

This research was supported in part by the China National
Natural Science Foundation (NSFC) under grant No. 90604024,
the National Basic Research Program of China (973 Program)
under grant No. 2009CB320501, the National High Technology
Research and Development Program of China (863 Program)
under grant No. 2007AA01Z2A2, and the Key Project of
Chinese Ministry of Education under grant No. 106012.

REFERENCES

ANSI. American national standard for information technology
- role based access control, ANSI INCITS 359-2004, Feb.
2004.

Crampton J. Understanding and developing role-based
administrative models. In: proceedings of 12th ACM
conference on computer and communications security; 2005.
p. 158-67.

Crampton J. Discretionary and mandatory access controls for
role-based administration. In: proceedings of 20th annual IFIP
WG 11.3 working conference on data and applications
security; 2006. p. 194-208.

Crampton J, Loizou G. Administrative scope: a foundation for
role-based administrative models. ACM Transactions on
Information and Systems Security 2003;6(2):201-31.

Ferraiolo D, Sandhu R, Gavrila S, Kuhn D, Chandramouli R.
Proposed NIST standard for role-based access control. ACM
Transactions on Information and Systems Security 2001;4(3):
224-74.

Joshi], Bhatti R, Bertino E, Ghafoor A. Access control language for
multidomain environments. IEEE Internet Computing 2004:
40-50.

Kapadia A, Al-Muhtdai J, Campbell R, Mickunas D IRBAC 2000:
secure interoperability using dynamic role translation. In:
Technical Report: UIUCDCS-R-2000-2162; 2000.

Koch M, Mancini LV, Parisi-Presicce F. Administrative scope in the
graph-based framework. In: proceeding of the 9th ACM
symposium on access control models and technologies; 2004.
p. 97-104.

Nissanke N, Khayat EJ. Risk based security analysis of
permissions in rbac. In: proceedings of 2nd international
workshop on information systems; 2004.

Nita-Rotaru C, Li N. A framework for role-based access control in
group communication systems. In: proceedings of
international workshop on security and parallel and
distributed systems; 2004.

Nyanchama M, Osborn S. The role graph model and conflict of
interest. ACM Transactions on Information and Systems
Security 1999;2(1):3-33.

Oh S, Sandhu R, Zhang X. An effective role administration model
using organization structure. ACM Transactions on
Information and System Security 2006;9(2):113-37.

Osborn S, Guo Y. Modeling users in role-based access control. In:
proceedings of 5th ACM workshop on role-based access
control; 2000. p. 31-8.

Osborn S, Sandhu R, Munawer Q. Configuring role-based access
control policies. ACM Transactions on Information and
Systems Security 2000;3(2):85-106.

Park J, Sandhu R, Ahn GJ. Role-based access control on the web.
ACM Transactions on Information and Systems Security 2001,
4(1):37-71.

Piromruen S, Joshi]. An RBAC framework for time constrained secure
interoperation in multi-domain environments 2005:36-48.

Core and hierarchical role based access control (RBAC) profile
of XACML v2.0, http://docs.oasis-open.org/xacml/2.0/
access_control-xacml-2.0-rbac-profilel-spec-os.pdf.

Sandhu R. Role versus group. In: proceeding of 1st ACM workshop
on role-based access control; 1995. p. 1-12.

Sandhu R, Coyne E, Reinstein H, Youman C. Role-based access
control model. IEEE Computer 1996;29(2):38-47.

Sandhu R, Bhamidipati V, Munawer Q. The ARBAC97 model for
role-based administration of role. ACM Transactions on
Information and Systems Security 1999;2(1):105-35.

Shafiq B, Joshi], Bertino E, Ghafoor A. Secure interoperation in
a multidomain environment employing RBAC poilcies. IEEE
Transactions on Knowledge and Date Engineering 2005;17(11):
1557-77.

Sun’s XACML, http://sunxacml.sourceforge.net/.

Tolone W, Ahn G, Pai T, Hong S. Access control in collaborative
systems. ACM Computing Surveys 2005;37(1):29-41.

OASIS XACML. Core Specification: eXtensible Access Control
Markup Language (XACML), http://www.oasis-open.org/
committees/tc_home.php?wg abbrev=xacml.

Qi Liis a Ph.D. student in Department of Computer Science at
Tsinghua University. His research interest includes network
architecture and protocols, system and network security. Li
has a M.S. in computer science from Chinese Academy of
Sciences, China.

Xinwen Zhang is a research fellow in Samsung Information
Systems America. His research interest includes computer
and system security models, security in distributed and
mobile computing systems, trusted computing and high
assurance systems. Zhang has a Ph.D in information and
software engineering from George Mason University.

Mingwei Xu is a professor in Department of Computer Science
at Tsinghua University. His research interest includes
computer network architecture, high-speed router architec-
ture and network security. Xu has a Ph.D in computer science
from Tsinghua University, China.

Jianping Wu is a professor of Department of Computer
Science at Tsinghua University. He is also a director of
Network Research Center of Tsinghua University. The major
research areas of his group include next generation Internet
architecture, terabit IP router, network management and
security, P2P and overlay network, QoS management and QoS
routing, formal methods and protocol testing. He is vice
president of Internet Society of China (ISC), and chairman of
APAN. Wu has a Ph.D in computer science from Tsinghua
University, China.

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://sunxacml.sourceforge.net
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

	Towards secure dynamic collaborations with group-based RBAC model
	Introduction
	Related work
	The GB-RBAC model
	Overview of GB-RBAC
	Model description

	GB-RBAC administrative model
	Overview
	GB-RBAC grant model
	User and group prerequisite conditions
	User-role assignment

	GB-RBAC revocation model
	Discussion

	Supporting Ad-hoc collaborations with GB-RBAC
	Ad-hoc collaboration scheme
	Role conflicts
	Operations for collaboration

	Prototype implementation and evaluation
	Policy specification
	Performance evaluation

	Conclusion and future work
	Acknowledgements
	References

