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A Sufficient Condition for Instability of Buffer Priority
Policies in Re-Entrant Lines

Chuang Lin, Mingwei Xu, Dan C. Marinescu, Fengyuan Ren, and
Zhiguang Shan

Abstract—We use a buffer-boundedness approach to study the stability
of re-entrant lines with a buffer priority scheduling policy. Using Petri net
models we establish a sufficient condition for instability of such systems
having a positive feedback loop. An example of unstable systems is also
given.

Index Terms—Buffer boundedness, Petri net, priority scheduling, re-en-
trant lines, stability.

I. INTRODUCTION

When designing and building a complex system it is necessary to
select and enforce a scheduling policy for each shared resource. The
selected scheduling policy helps the system achieve some objective
function. For example, in the case of a manufacturing system, priority
scheduling may allow us to respond more promptly to particular classes
of customers.

Stability is a critical property of a scheduling policy. A queuing
system is stable if the time in the system is bounded or, equivalently, if
the number of customers in the system is bounded. The mean time in
the system and the mean number of customers in the system are related
by Little’s law.

We assume all service times and arrival times are deterministic. In
discrete-time dynamic systems, the notion “stability” commonly means
“asymptotic stability,” i.e., convergence of sample paths to a fixed and
stable point. For Markovian systems, stability means the existence of a
steady-state distribution, i.e., positive recurrence [1].

It is generally taken for granted that as long as the overall traffic
intensity is less than unity [2] a network of queues is stable. However, it
has been demonstrated that for a system with multiple classes of service
and a deterministic scheduling policy based on priorities, instability
may occur even for loads less than unity [3], [4].

Traditionally, system stability is studied based upon time bounded-
ness of queuing models [1], i.e., the time in the system and the time
spent by the customer in all states prior to its departure are bounded.
In this note, we take a different approach. We study the buffer bound-
edness with the aid of Petri net [5], [6] models, and investigate the
number of customers in the system based upon the markings of the
Petri net model of the system. A scheduling policy is considered stable
if the markings of all the places in the Petri net model of the system are
bounded at all times [7].

Petri nets are good models for describing priority scheduling, as well
as nondeterministic and asynchronous behavior. In addition, Petri net
models can intuitively reveal a positive feedback structure, one of the
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major causes of instability. Here, we use Petri nets to model systems
with buffer priority scheduling policies. We derive a sufficient con-
dition for instability of systems containing a positive feedback loop
(PFL).

This note is organized as follows. Re-entrant lines [4] and the con-
ditions necessary for their stability are introduced in Section II. Sec-
tion III outlines the properties for basic Petri net structures of systems
with a PFL, and the relations of marking variation between two neigh-
boring buffers. A sufficient condition for a system with a PFL to be
unstable is presented in Section IV. At last, we give an example of un-
stable systems.

II. SYSTEM MODEL

In this note, we study the stability of re-entrant networks of queues
[2]. In our model, we assume that:

i) the routing is deterministic;
ii) the service time and the arrival time are deterministic;
iii) batch arrivals are allowed;
iv) static priority scheduling is supported;
v) scheduling is nonpreemptive.

The assumptions are as follows.

• There areS service stations.
• Each service stationi consists ofmi identical servers

(machines/processors/CPUs) that can run in parallel.
• There areK buffers.
• Customers in bufferk are served at service stations(k),

with service timetK , and the service can be provided by one
of thems(k) machines located at the service station.
• Since routing is deterministic, a customer first arrives at

buffer 1. After service is completed, the customer moves to
buffer 2, and so on, until it finally reaches bufferK. After
service is completed at this final buffer, the customer leaves
the system.

For eachi = 1; . . . ; S, the time units of work per machine at service
stationi, required by a customer is [3]

wi =
fkjs(k)=ig

tk

mi

: (1)

To guarantee any practical form of stability for the system, the capacity
constraint must be satisfied [3]

� = max(�wi) < 1; for i = 1; . . . ; S (2)

where� is the load of the system. Condition (2) is necessary but not
sufficient for the stability of a system using priority scheduling [5].

Let Bi = fkjs(k) = ig denote the set of buffers at service station
i. The customers in different buffers at stationi are served by the ma-
chines based on a scheduling policy. Several scheduling policies are
discussed in [1], [3], and [8].

In a Petri net model of re-entrant lines, the buffers are represented by
places, and the server processes are represented by transitions. In our
model, every transition except for the first and the last connects two
neighboring buffers, and acts as an output for one buffer and an input
for the other. Customer arrivals to the system are represented by a tran-
sition with no input places and with the first buffer of the system as its
output place. Customer departures from the system are represented by
a transition with the last buffer as its input place and no output places.
In such a Petri net model, the subnet obtained by deleting the first tran-
sition and the last transition is structurally bounded [6], i.e., under any
initial marking, the submodel is always bounded.
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The server process transitions are denoted bypi, the corresponding
firing rate by�i, and the delay byti(ti = 1=�i). The transition corre-
sponding to customer arrivals has a subscriptin, its firing rate is�, and
the delay istin(tin = 1=�). Each bufferi is represented by a placebi.
The customers are represented by tokens.

In a timed Petri net model without inhibitor and variable arcs, the
throughput of the output transition will tend toward a limit, as the
number of tokens in the input places increases, if the transition firing
rate is independent of the marking of the places [7]. Indeed, the average
token flowfi through the transitionpi must be less than the average
firing rate�i of the transition

fi � �i: (3)

III. STABILITY OF BASIC PETRI NET MODELS OFRE-ENTRANT LINES

WITH A PFL

Now, we discuss the characteristics of the basic Petri net structures
encountered in modeling re-entrant systems with buffer priority sched-
uling. First, let us define the terminology useful in specifying re-entrant
lines.

Note that the buffers are numbered according to the order in which
they are visited by the customer. Without loss of generality, we model
buffer bi by a place labeledbi in the Petri net model. We use the ter-
minology bufferbi and placebi interchangeably in this note, when the
two need not be distinguished. The server process that transfers cus-
tomers (tokens) from bufferbi to bufferbi+1 is modeled by a transition
labeledpi.

Definition 1: Buffer Sequence:A set of buffersL = bi; . . . ; bn(1 �
i < n) is called a buffer sequence if any pair of consecutive buffersbk
andbk+1 in the sequence are directly connected by a transitionpk(i �
k < n). �

In the Petri net model, inhibitor arcs are used to specify priority or-
dering between two buffers. An inhibitor arc drawn from placebi to
transitionpj , is called aflow directioninhibitor arc if i < j, else it is
referred to as a feedback inhibitor arc. Flow direction inhibitor arcs are
drawn in the direction of customer flow, whilefeedbackarcs are in the
opposite direction to customer flow.

Definition 2: Buffer Loop: If L = bi; . . . ; bn(1 � i < n) is a
buffer sequence andbi andbn are associated by a feedback inhibitor
arc frombn to transitionpi, L is called a buffer loop. When a buffer
loop contains only a single feedback inhibitor arc, the buffer loop is
called a simple buffer loop. �

Definition 3: PFL: Let L = bi; . . . ; bn(1 � i < n) be a buffer
loop. Furthermore, for every pair of neighboring buffersbk and
bk+1(i � k < n) either

1) there exists a flow direction inhibitor arc frombk to transition
pk+1; or

2) the input arc that connectsbk to transitionpk and the output arc
that connectspk to bk+1 are variable arcs.

When there exists at least one flow direction inhibitor arc from buffer
bj in L to transitionpj+1(i � j < n), thenL is called a PFL. When
n� i = 2,L is a special case of the PFL and is called a direct positive
feedback loop (DPFL). �

To simplify the graphs, in the following models the places corre-
sponding to the machines are removed unless explicitly specified. The
marking of a buffer placebi is a function of timet, denoted byM(bi; t).

In dynamic systems, stability is commonly used to mean “asymp-
totic stability,” i.e., the convergence of a sample path to a fixed and
stable point. In timed Petri net models, the samples are represented by
the number of tokens in the places at different time points. Let us ex-
amine the relationship of changes in the number of tokens with time
between two neighboring buffers, and the effect of the inhibitor arc.

Fig. 1. Submodel with an inhibitor arc.

Fig. 2. Submodel with sequential inhibitor arcs.

In the following discussion, we assume that the parameters of the sub-
models satisfy (2).

Fig. 1 shows a submodel in which transitionpi has a higher priority
thanpi+1, i.e., whenbi contains tokens,pi is enabled butpi+1 is dis-
abled untilbi is empty.

Let M(bi; t) > 0, M(bi+1; t) = 0 and let�i be a real number
representing a time duration such that at timet+ �i bufferbi becomes
empty, i.e.,M(bi; t + �i) = 0. Then,�i satisfies

�i = ti (M(bi; t) + b��ic) (4)

wherebxc denotes the largest integer that is smaller than or equal to
x andti is the firing time of transitionpi. In (4), b��ic represents the
number of tokens that enterbi during �i. From (4), we have the fol-
lowing relationships:

��i �
�i
ti
�M(bi; t)

��i <
�i
ti
�M(bi; t) + 1

From these two relations and (4), we have

M(bi; t)� 1

�i � �
< �i �

M(bi; t)

�i � �
: (5)

Therefore, from (4) at timet + �i, we have

M(bi+1; t+ �i) = M(bi; t) + b��ic �M(bi; t): (6)

Substituting (5) in (6), we get

�
M(bi; t)� 1

�i � �
+M(bi; t) < M(bi+1; t+ �i)

�M(bi; t) + �
M(bi; t)

�i � �
: (7)

Expression (4) should be revised when multiple inhibitor arcs are con-
nected sequential. Fig. 2 shows an example wherepi�1 has higher pri-
ority thanpi and, in turn,pi has higher priority thanpi+1.

For the model in Fig. 2, letM(bi; t) > 0, M(bi+1; t) = 0,
M(bi�1; t) = 0 and let�i represent a time duration such that at time
t + �i buffer bi becomes empty, i.e.,M(bi; t + �i) = 0. Then,�i
satisfies

�i = ti (M(bi; t) + b��ic) + ti�1b��ic: (8)

In (8), the last term represents the time whenpi is disabled because of
the presence of tokens inbi�1. This delay is equal to the time taken
by pi�1 to move all the tokens frombi�1 to bi. If there are multiple
transitionspk(k < i) which have higher priority thanpi, i.e., there are
multiple flow direction inhibitor arcs that end inpi, the coefficientti�1
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Fig. 3. Subnet model with a feedback inhibitor arc.

Fig. 4. Subnet structure with variable arcs.

of the second term should be replaced by the sum of the firing times of
all these transitionspk(k < i). Equation (8) can be expressed as

tiM(bi; t)� (ti + ti�1)

1� �(ti + ti�1)
< �i �

tiM(bi; t)

1� �(ti + ti�1)
: (9)

Whenpi is serving the last customer in bufferbi, a customer arriving
into bi�1 cannot contribute to the waiting time ofpi because the
scheduling is nonpreemptive. Thus, the last termti�1b��ic becomes
ti�1(b��ic � 1), which is greater than or equal to zero. In this case,
(9) becomes

tiM(bi; t)� (ti + 2ti�1)

1� �(ti + ti�1)
< �i �

tiM(bi; t)� ti�1

1� �(ti + ti�1)
: (10)

Let us now consider a subnet with a feedback inhibitor arc, as shown
in Fig. 3.

For this model, letM(bi; t) > 0,M(bj ; t) = 0 and let�i represent
a time duration such that at timet+ �i, bufferbi becomes empty, i.e.,
M(bi; t + �i) = 0. Then,�i satisfies

�i = ti (M(bi; t) + f(k)) : (11)

Wheref(k) denotes the number of customers which enterbi during
�i. Here,k depends on the size of�i, the sum of the delay times for
transitionspj to pi�1, and the structure of the path (e.g., the existence
of inhibitor arcs) frompj to pi�1. Therefore, at timet+ �i we have

M(bj ; t+ �i) = b��ic � b�tiM (bi; t)c : (12)

Fig. 4 shows a subnet where transitionpi connects two buffersbi and
bi+1 with a pair of variable arcs. This represents the case where the
machines associated with server processpi can work on a batch of
customers at a time.

LetM(bi; t) > 0,M(bi+1; t) = 0 and let�i represent a time dura-
tion such that at timet + �i buffer bi becomes empty, i.e.,M(bi; t +
�i) = 0. We have

M(bi+1; t+ �i) = M(bi; t); �i = ti (13)

Definition 4: Stability of Buffer Priority Scheduling Policies:Given
a scheduling policy, if for any arrival rate� for a system satisfying (2)

M(bi; t) � N 8 bi at any time instantt (14)

for some positive integerN (which could depend on the initial marking
as well as�), we say that the scheduling policy is stable. �

When a system is unstable, there is at least one bufferbi whose con-
tents are unbounded in time, i.e.,M(bi; t) may go to infinity. There
are only two possible reasons for the unboundedness ofbi in such a
system model. The first reason could be that the capacity of the output
transitionpi of buffer bi or the sum of the capacities of the set of con-
secutive transitions which have last-buffer–first-served priorities in the
same service station are smaller than the system throughput; that is, (2)

is not satisfied. However, this cannot be true, since we assumed that the
system satisfies (2). The second reason could be that there is a positive
feedback circulation forM(bi; t). In such a system model, only feed-
back inhibitor arcs can cause the positive feedback.

IV. I NSTABILITY OF RE-ENTRANT LINES WITH A PFL

We now derive the conditions for instability in re-entrant systems
based on the properties of the basic Petri net structures given in Sec-
tion III. If the system satisfies (2), and the net structure contains a PFL,
we can determine whether the system is unstable using the following
theorem.

Theorem: Sufficient Condition for Instability of Re-Entrant Systems
With a PFL: Let a systemL = b1; . . . ; bK(K > 2) contain at least
one PFLL1 = b1; . . . ; bn; . . . ; bm(1 � n < m � K) in which there
is a flow direction inhibitor arc connecting bufferbn to transitionpn+1.
The rate of customer arrivals to the system is� and the system satisfies
(2). If there exists an integerN(N > 1) such that (15) holds, then the
system is unstable

�

�m
�

N � 1

�n � �
+N > N: (15)

Proof: According to (7)–(13), for a PFL there exists a time se-
quence�1 < �2 <; � � � ; < �n <; � � � ; < �m�1 Such thatM(b1; t) �
M(b2; t+ �1) � � � � �M(bn+1; t+ �n) �� � � �M(bm; t+ �m�1)
and

M(bn+1; t+ �n)

> �
M(bn; t+ �n�1)� 1

�n � �
+M(bn; t+ �n�1) :

BecauseM(b1; t) � M(bn; t + �n�1) andM(bn+1; t + �n) �
M(bm; t + �m�1), we have

M(bn+1; t+ �n) > �
M(b1; t)� 1

�n � �
+M(b1; t)

and

M(bm; t+ �m�1) > �
M(b1; t)� 1

�n � �
+M(b1; t) :

Let M(b1; t) = N , and �m represent a time duration such that
M(bm; t + �m) = 0 at time instantt + �m(�m > �m � 1). Then,
according to (12), we have

M(b1; t+�m)� �
M(b1; t)�1

�n��
+M(b1; t)

�

�m

=
�

�m
�

N�1

�n��
+N :

The previous equation together with (15) implies thatM(b1; t+�m) >
M(b1; t). Thus the number of customers in the buffers increases as a
function of time; that is, the system is unstable. �

For (15) to hold, the initial markingM(b1; t) must be greater than 1.
When the PFL includes a number of flow direction inhibitor arcs, the
sufficient condition for instability can have a looser constraint. In the
theorem, (15) is suitable for any PFL.

V. EXAMPLE: AN UNSTABLE CLIENT-SERVER SYSTEM

In this example, we consider the client-server system shown in Fig. 5.
Both the client and the server have two processes associated with them.
We denote the processes at the client asp1 andp4, and those at the
server asp2 andp3. Processesp1; . . . ; p4 are associated with buffers
b1; . . . ; b4, respectively. Processp4(p2) has a higher priority (nonpre-
emptive) overp1(p3). First, we assume that transactions arrive at the
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Fig. 5. Client-server system.

Fig. 6. Petri net model of the client-server system.

TABLE I
BUFFERMARKING FUNCTIONS

client in a deterministic fashion at the rate� = 1. We further assume
that each transmission ofp1 andp3 takes the same CPU time�, and
the processing times ofp2 andp4 for each transaction are equal and
denoted byc. Finally, we assume thatc+ � < 1, i.e., (2) is satisfied.

A timed Petri net model of the client-server system is shown in Fig. 6.
Transitionin models the arrival of transactions to the client bufferb1
at the rate�. Transitionpi models processpi for i = 1; 2; 3; 4. The
inhibitor arc fromb4 to p1 models the priority for processp4 overp1,
and the inhibitor arc fromb2 to p3 models the priority forp2 overp3.
The cardinality of the variable arc associated withp1 is equal toM(b1),
and the cardinality of the variable arc associated withp3 is equal to
M(b3).

In the model shown in Fig. 6, a feedback loop is formed by the in-
hibitor arc fromb4 to p1. This loop includes a pair of variable arcs
betweenb1 andb2, a flow direction inhibitor arc connectingb2 andb3
and a pair of variable arcs betweenb3 andb4. So, the loop is a PFL.
Let us set the initial marking,M(b1; 0

+) = m andM(bi; 0
+) = 0 for

i = 2,3,4, and set� = 1=6 andc = 2=3. Table I lists the buffer con-
tents at different points. These results are obtained using (5), (7), and
(11)–(13). At time2=3+ 4m� 2, the number of transactions waiting
in b1 increases to2m� 1. This shows that there is a positive feedback
for the number of transactions inb1 whenm > 1. With increase in
time this cycle repeats, and the number of transactions inb1 grows in-
definitely, i.e., the system is not stable. When� = 1, �n = 3=2 and
�m = 3=2, we can see from (15) that the sufficient condition for this
system to be unstable ism > 1.
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Stability of Data Networks Under an Optimization-Based
Bandwidth Allocation

Heng-Qing Ye

Abstract—It is known that a data network may not be stable at the con-
nection level under some unfair bandwidth allocation policies, even when
the normal offered load condition is satisfied, i.e., the average traffic load
at each link is less than its capacity. In this note, we show that, under the
normal offered load condition, a data network is stable when the band-
width of the network is allocated so as to maximize a class of general utility
functions. Using the microscopic model proposed by Kelly for a transmis-
sion control protocol (TCP) congestion control algorithm, we argue that
the bandwidth allocation in the network dominated by this algorithm can
be modeled as our bandwidth allocation model, and hence that the network
is stable under the normal offered load condition. This result may shed light
on the stability issue of the Internet since the majority of its data traffic is
dominated by the TCP.

Index Terms—Bandwidth allocation, data network, Lyapunov function,
stability, transmission control protocol (TCP).

I. INTRODUCTION

There is no doubt that the Internet has been one of the most exciting
and revolutionary technological developments in the past decade. The
information flows along the Internet are still increasing dramatically,
and the traffic control of the information flows has been an important
issue in both the academics and the telecommunication industry. Cur-
rently, the majority of the Internet traffic is dominated by various ver-
sions of the transmission control protocol (TCP); see, for example, [7],
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