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A Sufficient Condition for Instability of Buffer Priority major causes of instability. Here, we use Petri nets to model systems
Policies in Re-Entrant Lines with buffer priority scheduling policies. We derive a sufficient con-
dition for instability of systems containing a positive feedback loop
Chuang Lin, Mingwei Xu, Dan C. Marinescu, Fengyuan Ren, and(PFL).
Zhiguang Shan This note is organized as follows. Re-entrant lines [4] and the con-
ditions necessary for their stability are introduced in Section Il. Sec-
_ tion Il outlines the properties for basic Petri net structures of systems
Abstract—We use a buffer-boundedness approach to study the stability i, 3 pEL and the relations of marking variation between two neigh-
of re-entrant lines with a buffer priority scheduling policy. Using Petri net . ff‘ fici ition f ith
models we establish a sufficient condition for instability of such systems boring bu_ ers. A su '(_:'em and't'on ora SySte_m with a PFL to be
having a positive feedback loop. An example of unstable systems is alsounstable is presented in Section IV. At last, we give an example of un-
given. stable systems.

Index Terms—Buffer boundedness, Petri net, priority scheduling, re-en-
trant lines, stability. Il. SYSTEM MODEL

In this note, we study the stability of re-entrant networks of queues
|. INTRODUCTION [2]. In our model, we assume that:

When designing and building a complex system it is necessary to ,,') the routllng IS determlnlstlc;. . L
select and enforce a scheduling policy for each shared resource. Th_é_') the service time and the arrival time are deterministic;
selected scheduling policy helps the system achieve some objectivél') batc_h ar_rlvgls are a”ofNeO!;
function. For example, in the case of a manufacturing system, priority Iv) static priority scheduling is supported;

scheduling may allow s to respond more promptly to particular classes ) Scheduling is nonpreemptive.
of customers. The assumptions are as follows.

Stability is a critical property of a scheduling policy. A queuing » There areS service stations.
system is stable if the time in the system is bounded or, equivalently, if * Each service station consists ofin; identical servers
the number of customers in the system is bounded. The mean time in (machines/processors/CPUs) that can run in parallel.
the system and the mean number of customers in the system are related * There arell buffers.
by Little’s law. » Customers in buffek are served at service statief%),

We assume all service times and arrival times are deterministic. In with service time «, and the service can be provided by one
discrete-time dynamic systems, the notion “stability” commonly means of them () machines located at the service station.
“asymptotic stability,” i.e., convergence of sample paths to a fixed and + Since routing is deterministic, a customer first arrives at
stable point. For Markovian systems, stability means the existence of a buffer 1. After service is completed, the customer moves to
steady-state distribution, i.e., positive recurrence [1]. buffer 2, and so on, until it finally reaches bufféf. After

It is generally taken for granted that as long as the overall traffic service is completed at this final buffer, the customer leaves
intensity is less than unity [2] a network of queues is stable. However, it the system.
has been demonstrated that for a system with multiple classes of servideor €ach = 1,..., 5, the time units of work per machine at service

and a deterministic scheduling policy based on priorities, instabilifation:, required by a customer is [3]
may occur even for loads less than unity [3], [4].

Traditionally, system stability is studied based upon time bounded- w; = "
ness of queuing models [1], i.e., the time in the system and the time {kls(k)=i}
spent by the customer in all states prior to its departure are bounded. . . .
In this note, we take a different approach. We study the buffer boun-ElQ guar_antee any prac?'cf"" form of stability for the system, the capacity
edness with the aid of Petri net [5], [6] models, and investigate tﬁgnstralnt must be satisfied [3]
number of customers in the system based upon the markings of the
Petri net model of the system. A scheduling policy is considered stable

if the markings qf all the places in the Petri net model of the system EWFlerep is the load of the system. Condition (2) is necessary but not

bounded at all times [7]. L _ sufficient for the stability of a system using priority scheduling [5].
Petri nets are good models for describing priority scheduling, as We”Let B; = {k|s(k) = i} denote the set of buffers at service station

as nondeterministic and asynchronous behavior. In addition, Petri nef, . c:Jstomers in different buffers at statioare served by the ma-

models can intuitively reveal a positive feedback structure, one of tEﬁines based on a scheduling policy. Several scheduling policies are
discussed in [1], [3], and [8].
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n;

1)

p =max(Aw,;) < 1, fori=1,...,8 (2)
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The server process transitions are denoteg;byhe corresponding
firing rate bypu,, and the delay by; (t; = 1/u;). The transition corre- | >|
sponding to customer arrivals has a subsdnpits firing rate isA, and | |

the delay ig;, (t;» = 1/)). Each buffer is represented by a plaée A b; Di bi+; Di+l
The customers are represented by tokens.

In a timed Petri net model without inhibitor and variable arcs, theig. 1. Submodel with an inhibitor arc.
throughput of the output transition will tend toward a limit, as the

number of tokens in the input places increases, if the transition firing
rate is independent of the marking of the places [7]. Indeed, the average
token flow f; through the transitiop; must be less than the average

firing rate . of the transition A b, Dii b p b p
i i- i i i+l i+l

fi < ) . -
Fig. 2. Submodel with sequential inhibitor arcs.

lll. STABILITY OF BAsIC PETRI NET MODELS OFRE-ENTRANT LINES  In the following discussion, we assume that the parameters of the sub-
WITH A PFL models satisfy (2).

Now, we discuss the characteristics of the basic Petri net structureg'g' 1 shows a submodel in which transitipnhas a higher priority

encountered in modeling re-entrant systems with buffer priority sche -anp”lt’”'{f'i’s\’\g:ﬁ:’t; contains tokeng; is enabled bup..+, is dis-

. . . . . [P led un
uling. First, let us define the terminology useful in specifyin re-entraﬁf3
Iineg o pecifying Let M(b;,t) > 0, M(b;1,t) = 0 and letr; be a real number

Note that the buffers are numbered according to the order in Whig;prese_ntin\g;a;ime dEraﬂog S_F’ﬁh th‘”f‘t at _t“?eTi bufferb; becomes
they are visited by the customer. Without loss of generality, we modgl"P®: I-€-4 (bist 4 7i) = 0. Then,r; satisfies
buffer b; by a place labeled; in the Petri net model. We use the ter-
7 =t; (M(b;,t A\T; 4
minology bufferb; and placé; interchangeably in this note, when the (M(bi, 1) + [ A7) (4)

two need not be distinguished. The server process that transfers Gijsare| .| denotes the largest integer that is smaller than or equal to
tomers (tokens) from buffés, to bufferb:..\ is modeled by a transition . andy, is the firing time of transition;. In (4), | Ar;] represents the

labeledp: . number of tokens that entér during ;. From (4), we have the fol-
Definition 1: Buffer SequenceA set of buffersl. = b;,...,b,(1 < lowing relationships:

i < n) is called a buffer sequence if any pair of consecutive buffgrs

andb.+1 in the sequence are directly connected by a transitidn < A > :_ — M(b;,t)

E<n). o i
In the Petri net model, inhibitor arcs are used to specify priority or- AT < L — M(bit)+1

dering between two buffers. An inhibitor arc drawn from placeao ti
transitionp;, is called aflow directioninhibitor arc ifi < j, else itis From these two relations and (4), we have

referred to as a feedback inhibitor arc. Flow direction inhibitor arcs are

M(bit) =1 M(bi.1)

drawn in the direction of customer flow, whifeedbaclarcs are in the 7 < . (5)
opposite direction to customer flow. pi = A pi = A
Definition 2: Buffer Loop: If L = bi.....b.(1 < i < n)isa Therefore, from (4) at time + 7;, we have
buffer sequence ang andb,, are associated by a feedback inhibitor
arc fromb,, to transitionp;, L is called a buffer loop. When a buffer M(big1,t+ 1) = M(bs, t) + [ A5 ] > M(bsi, t). (6)
loop contains only a single feedback inhibitor arc, the buffer loop is
called a simple buffer loop. o Substituting (5) in (6), we get
Definition 3: PFL: Let L = b;,...,b,(1 < i < n) be a buffer ,
loop. Furthermore, for every pair of neighboring bufférs and P <M)J + M(b;,t) < M(bis1,t +7i)
br+1(i < k < n) either fi = A
1) there exists a flow direction inhibitor arc froba to transition < M(b;,t) + P <M(bz‘-/;\) )J ) @)
Pk41; OF Hi =

2) the input arc that connedis to transitionp;. and the outputarc gy nression (4) should be revised when multiple inhibitor arcs are con-

that connectg,. 10 by, are variable arcs. nected sequential. Fig. 2 shows an example where has higher pri-
When there exists at least one flow direction inhibitor arc from bUﬁerfrity thanp; and, in turnp; has higher priority thap,- 1

b; in L to trapsitionpj{rl(i < j < n), thenL is_ called a PEL. Wher_1_ For the model in Fig. 2, let(b;,#) > 0, M(bip1.1) = 0,
n—1i =2, Lis a special case of the PFL and is called a direct posﬂn@gl(bi_h #) = 0 and letr; represeht a time duration such that at time

feedback loop (DPFL). _ ® ¢+ 7 buffer b; becomes empty, i.eM(b;,t + ;) = 0. Then,r;
To simplify the graphs, in the following models the places corres,sisfies

sponding to the machines are removed unless explicitly specified. The
marking of a buffer placg; is a function of time, denoted by (b;. ¢). 7=t (M(biyt) 4+ | M7i]) + tioy [ A7 . (8)

In dynamic systems, stability is commonly used to mean “asymp-
totic stability,” i.e., the convergence of a sample path to a fixed ard (8), the last term represents the time wheiis disabled because of
stable point. In timed Petri net models, the samples are representedhgypresence of tokens in—;. This delay is equal to the time taken
the number of tokens in the places at different time points. Let us éxy p,—; to move all the tokens fror,_; to b;. If there are multiple
amine the relationship of changes in the number of tokens with tinmnsitiong. (k < i) which have higher priority thap;, i.e., there are
between two neighboring buffers, and the effect of the inhibitor armultiple flow direction inhibitor arcs that end jn, the coefficient,
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o) is not satisfied. However, this cannot be true, since we assumed that the
}—>O——V system satisfies (2). The second reason could be that there is a positive
A b Dj b Di feedback circulation foAZ (b;,t). In such a system model, only feed-

back inhibitor arcs can cause the positive feedback.

IV. INSTABILITY OF RE-ENTRANT LINESWITH A PFL

O—N—P‘—-N—PO We now derive the conditions for instability in re-entrant systems

based on the properties of the basic Petri net structures given in Sec-

b Di bi+i tion Ill. If the system satisfies (2), and the net structure contains a PFL,
we can determine whether the system is unstable using the following
Fig. 4. Subnet structure with variable arcs. theorem.

Theorem: Sufficient Condition for Instability of Re-Entrant Systems
of the second term should be replaced by the sum of the firing times\fth a PFL: Let a systeml = bi1,...,bx (I > 2) contain at least

all these transitiongy (k < 7). Equation (8) can be expressedas ~ one PFLLy = b1,...,b,,...,bm(1 < n < m < K) inwhich there
is a flow direction inhibitor arc connecting buffer to transitiornp,, + .
tiM(bist) = (ti +tiz1) . M (9) Therate of customer arrivals to the system ind the system satisfies
L= At +tizr) T L=t tio) (2). If there exists an integeY (N > 1) such that (15) holds, then the

Whenp; is serving the last customer in buffler, a customer arriving SYStem is unstable

into b;—, cannot contribute to the waiting time @f because the A N1
scheduling is nonpreemptive. Thus, the last térm | A7 | becomes { ({ < — >\>J + N>J > N. (15)
t:_1(| A7) — 1), which is greater than or equal to zero. In this case, fom Hin
(9) becomes Proof: According to (7)—(13), for a PFL there exists a time se-
) . -~ quencer; < o <, 00, < Ty <,00 0, < Tin—1 Such thatM (by,t) <
t; M (b; t)— (t; + 2t1;1) t; M (bi, t) —t;_1
! R A 10)  M(bs,t <o S Mbygr,t +70) <o < M(byyt + Tre
T A(h 4 f1) SToNh 40 (20) am(j +71) < < Mbugr,t+70) <o < M (b, t+ 7o)
Let us now consider a subnet with a feedback inhibitor arc, as shown ;
in Fig. 3. M(bntrst +70)
For this m.odel, lefV (b;,t) > 0, M(b;,t) = 0 and letry represgnt > <p <M(b”’t t 1) - 1)J + M(b,,t+ Tn71)> .
a time duration such that at timet 7;, bufferb; becomes empty, i.e., Hn — A

M(b;.t +7) =0.Then,n isfi
(bi,t 4 7) = 0. Then,, satisfies BecauseM (b1, t) < M(bn,t + Tn_1) and M(bpsrst + 7) <

7=t (M(bi,t) + f(k)). (11) M by, t + Tm—1), We have

Where f (k) denotes the number of customers which ehteduring M(bpsr,t+70) > <p <M(b1‘t) - 1)J n M(bl,t)>
7i. Here,k depends on the size of, the sum of the delay times for fin = A
transitionsy; to p;—1, and the structure of the path (e.g., the existenc@nd

of inhibitor arcs) fromp, to p;—1. Therefore, at time + 7 we have M(boot 4+ 7er) > <P <M(b1‘t) - 1)J + My t)) .
’ fin — A ’

M(b;, t+ 1) =|Ar;] > [At; M (b;,1)]. 12 . .
! )=l =l ) (12) Let M(b1,t) = N, andr,, represent a time duration such that

Fig. 4 shows a subnet where transitjgnconnects two buffers; and M (b, t + 7)) = 0 at time instant + 7, (7, > 7m — 1). Then,
b;1 with a pair of variable arcs. This represents the case where tgcording to (12), we have
machines associated with server procesgan work on a batch of

customers at a time. M(by,t+70m)> K {)\ <M>J +M(b1,t)> A J
Let M (b;,t) > 0, M(b;11,t) = 0 and letr; represent a time dura- fim =X Hrm
tion such that at time + 7; buffer b; becomes empty, i.eM (b;, ¢ + _ { A Q\ ( N-1 )J n N)J
71) = 0. We have o D) . '
M(biar,t +15) = M(birt), — (13) The previous equation together with (15) implies théth: , t+7..,) >
' M (b1, t). Thus the number of customers in the buffers increases as a
Definition 4: Stability of Buffer Priority Scheduling PoliciesSiven  function of time; that is, the system is unstable. o

a scheduling policy, if for any arrival rafefor a system satisfying (2)  For (15) to hold, the initial marking/ (b, ,¢) must be greater than 1.
) _ When the PFL includes a number of flow direction inhibitor arcs, the
M(bi,t) <N Vb, atany time instant (14)  sufficient condition for instability can have a looser constraint. In the

theorem, (15) is suitable for any PFL.
for some positive intege¥ (which could depend on the initial marking (15) s sui Y

as well as\), we say that the scheduling policy is stable. o
When a system is unstable, there is at least one buffghose con-
tents are unbounded in time, i.84(b;,t) may go to infinity. There  Inthis example, we consider the client-server system shown in Fig. 5.
are only two possible reasons for the unboundedness iof such a Both the client and the server have two processes associated with them.
system model. The first reason could be that the capacity of the outp\i® denote the processes at the clienpasndp,, and those at the
transitionp; of bufferb; or the sum of the capacities of the set of conserver ag. andp;. Processes, ..., ps are associated with buffers
secutive transitions which have last-bufferfirst-served priorities in tlbe, . . ., b4, respectively. Procegs (p2) has a higher priority (nonpre-

same service station are smaller than the system throughput; that isef@ptive) ovep, (ps). First, we assume that transactions arrive at the

V. EXAMPLE: AN UNSTABLE CLIENT-SERVER SYSTEM
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Fig. 6. Petri net model of the client-server system. . L
Stability of Data Networks Under an Optimization-Based

Bandwidth Allocation
TABLE |

BUFFERMARKING FUNCTIONS Heng-Qing Ye
t Mby | Mb) | Mbs) | Mo .

o m 0 0 0 A_bstract—lt is known that a (_jata netvyork may not be st_a_ble at the con-
nection level under some unfair bandwidth allocation policies, even when

1/6 0 m 0 0 the normal offered load condition is satisfied, i.e., the average traffic load
1/6+2m-2+2/3 0 0 3m-2 0 at each link is less than its capacity. In this note, we show that, under the
23+2m-2 0 ] 0 3m-2 normal offered load condition, a data network is stable when the band-
width of the network is allocated so as to maximize a class of general utility

2/3+4m-2 2m-1 0 0 0 functions. Using the microscopic model proposed by Kelly for a transmis-

sion control protocol (TCP) congestion control algorithm, we argue that
the bandwidth allocation in the network dominated by this algorithm can

client in a deterministic fashion at the rate= 1. We further assume be modeled as our bandwidth allocation model, and hence that the network
: is stable under the normal offered load condition. This result may shed light

that each transmission pf andps takes the same CPU tinde and  on the stability issue of the Internet since the majority of its data traffic is

the processing times @f, andp, for each transaction are equal andlominated by the TCP.

deno.ted by:. F!nally, we assume t.hat—l— b<1ie, (2? 1S Sat'Sﬂ_ed'_ Index Terms—Bandwidth allocation, data network, Lyapunov function,
Atimed Petri net model of the client-server system is shown in Fig. &ability, transmission control protocol (TCP).

Transitionin models the arrival of transactions to the client buffer

at the rate\. Transitionp; models process; fori = 1,2,3,4. The
inhibitor arc fromb, to p+ models the priority for process, overp:, |. INTRODUCTION
and the inhibitor arc fronh, to ps models the priority fop, overps. There is no doubt that the Internet has been one of the most exciting

The cardinality of the variable arc associated witlis equal ta/ (1),  and revolutionary technological developments in the past decade. The
and the cardinality of the variable arc associated withis equal to  information flows along the Internet are still increasing dramatically,
M(bs). and the traffic control of the information flows has been an important
In the model shown in Fig. 6, a feedback loop is formed by the ifissue in both the academics and the telecommunication industry. Cur-
hibitor arc fromb, to p,. This loop includes a pair of variable arcsrently, the majority of the Internet traffic is dominated by various ver-

betweerb, andb., a flow direction inhibitor arc connectinig andbs  sjons of the transmission control protocol (TCP); see, for example, [7],
and a pair of variable arcs betwekgnandb,. So, the loop is a PFL.

Let us set the initial marking\/ (b1, 07) = m andM (b;,07) = 0 for

i =2,3,4,and set = 1/6 andc = 2/3. Table | lists the buffer con-

tents at dlf'fere.nt pOI.?I"ltS./TheSE. results are obtained USI.r'Ig ). (.7.)’ ang/lanuscript received August 29, 2001, revised May 24, 2002 and October 31,
_(11)__(13)' Attime2/3 + 4 m—2, the number Of_transac_t'_ons waiting 002, Recommended by Associate Editor X. Zhou. This work was supported in
in b1 increases t@m — 1. This shows that there is a positive feedbackart by a grant from the Academic Research Fund and the Center for E-Business
for the number of transactions in whenm > 1. With increase in of the National University Singapore. Part of this work was done while the au-
time this cycle repeats, and the number of transactiohs grows in- thor was visiting the Statistical Laboratory, Cambridge University, Cambridge,
definitely, i.e., the system is not stable. Whlen':. Lopn = 3/2 and . .The author is with the School of Business, National University of Singapore,
pm = 3/2, we can see from (15) that the sufficient condition for thig 17591 Singapore (e-mail: bizyehg@nus.edu.sg).

system to be unstableis > 1. Digital Object Identifier 10.1109/TAC.2003.814269
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