dover6: Network Layer Virtualization for

IPvA4-IPv& Coexistence

Yong Cui, Peng Wu, Mingwei Xu, Jianping Wu,
Yiu L. Lee, Alain Durand, and Chris Metz

Abstract

IANA exhausted its IPv4 address space in 2011, and IPvé is the next generation
to replace IPv4. However, the IPv6 transition techniques are still immature and
holding back the development of the next-generation Internet. Hence, IPv4-IPvé
coexistence is becoming increasingly imminent. During the coexistence period, the
Internet will consist of IPv4-only, IPvé-only, and dual-stack segments. Both the net-
work infrastructure and operations must support IPv4-only, IPvé-only, and dual-stack
accordingly. This article develops a 4overé virtualization architecture that virtual-
izes IPv4-only networks over IPv6-only networks. This architecture enables two IPv4-
only segments to communicate over an IPvé-only network by using an IPv4-in-IPvé
tunnel. The architecture can be examined in different areas such as addressing
schema, layer 3 routing, and packet forwarding. The 4overé virtualization archi-
tecture is being standardized in IETF. Various implementations and deployment sce-

narios are actively discussed in the ISP and vendor communities.

he IPv4 world is facing a series of challenges, including
address shortage, routing scalability, broken end-to-
end property, and so on. Among them, the shortage of
addresses has become extremely urgent, considering
that IANA exhausted its remaining global address space, and
the regional registries will soon follow. IPv6 is being devel-
oped as the fundamental network protocol for the next-gener-
ation Internet, with the enhancements of much larger address
space, feasibility of hierarchical addressing and routing,
improved forwarding efficiency, mobility support, and so
forth. The IPv6 transition for the Internet has been discussed
for over a decade. On one hand, the pressure from IPv4
address storage seriously threatens Internet growth. This
threat encourages the Internet community to speed up IPv6
adoption. On the other hand, the majority of existing network
infrastructure, Internet services and applications, and the
majority of customers still remain in IPv4. As a result, both
IPv4 and IPv6 are going to coexist for some period of time.

IPv4-IPv& Coexistence Requirements

IPv4 and IPv6 are incompatible in design. The coexistence of
two protocols in the same networks will pose many challenges.
Most notably, an IPv4 network cannot communicate with an
IPv6 network. Therefore, network operators are required to
run two independent networks on the same infrastructure, by
maintaining dedicated addressing schema, network routing,
and data forwarding for each IP protocol. Different Internet
service providers (ISPs), Internet content providers (ICPs),
and users will adopt IPv6 at different paces. Some networks
may choose to stay in IPv4; some may support only IPv6 or
both. Despite the network complexity, end-to-end connectivity
must be preserved: a user must be able to access Internet ser-
vices regardless of which IP protocol is used underneath.
There are two types of techniques that may be used for
IPv4-1Pv6 coexistence: tunneling [3] and translation [4]. Tun-

neling is used to achieve IPv4-over-IPv6 or IPv6-over-IPv4
connectivity by encapsulation and decapsulation. Translation
is used to achieve direct connection between IPv4 and IPv6 by
translating IPv4 packets into IPv6 and IPv6 packets into IPv4.
Translation requires address binding between IPv4 and IPv6,
as well as address translation in application-layer protocols.

From the network perspective, following the end-to-end argu-
ments [5], the network should be simple, and complex functions
should be left to end users. Second, the TCP/IP model should
not be violated, and cross-layer operations should be kept mini-
mal. Third, massive cross-function between IPv4 and IPv6
should be avoided. Therefore, tunneling will be a better option
than translation. From the end-user perspective, ISPs should
provide both IPv4 and IPv6 global reachability. Realizing one of
them by an IPv4-over-IPv6 or IPv6-over-IPv4 tunnel improves
cost efficiency. However, legacy IPv4 users may not ever
upgrade to support IPv6 and IPv6-over-IPv4 tunnel; instead, it
makes more sense to require new IPv6 users to support IPv4
with IPv4-in-IPv6 tunneling and thereby communicate with lega-
cy users through IPv4. Therefore, we adopt IPv4-over-IPv6 tun-
neling to solve the more significant side of the problem.

Network Virtualization for IPv4-IPvé Coexistence

Network virtualization provides a feasible solution to meet the
above requirements and achieve IPv4-IPv6 coexistence. The
technology is applicable to supporting heterogeneous net-
works and technology innovations in nature [1]. In this appli-
cation environment, IPv4 and IPv6 are identical for data
forwarding. The forwarding engine of the router and switch
vehicles examines the destination field in the IP header and
forwards the packet based on the information in the forward
information base (FIB). As for addressing and routing, as well
as operations, administration, and maintenance (OAM), they
must be treated differently and independently. Network-layer
virtualization can provide the proper level of isolation to real-

44 0890-8044/12/$25.00 © 2012 IEEE

IEEE Network * September/October 2012

ize that. As a result, end-to-end
connectivity can be built, as long

Child VN

VN2

as two communication ends join Pva only

the homogeneous virtual networks
which are globally interconnected.

In general, the virtualization
for IPv4-IPv6 coexistence will

depend heavily on the capability

of the virtual network of one
address family to build part of its
entity on top of the virtual net-
work of the other address family
[2]. Considering that each ISP has

backbonge

its own schedule for IPv6 transi-
tion, the Internet is likely to be
mixed with IPv4-only segments,
IPv6-only segments, and dual-
stack segments. As a result, the
global interconnectivities of both
the virtual IPv4 and IPv6 networks
are only achievable if IPv4 virtual
networks can traverse the IPv6-
only segments and IPv6 virtual
networks can traverse the IPv4-

Infrastructure

& I1Pv6 node 8 Pv6 host
@ 1Pv4 node S1Pv4 host
@ Dual-stack node @Dual-stack host

only segments. The solution is to
use the heterogeneous segments
as virtual “infrastructure” and
build forwarding paths over them.
This method will significantly improve network cost efficiency,
for a great portion of the network can be IPv4-only or IPv6-
only and does not require supporting both address families
concurrently. This article develops a 4over6 virtualization
architecture for IPv4-IPv6 coexistence, in which separate vir-
tual networks are provided for IPv4 and IPv6 services over the
same infrastructure, and the IPv4 virtual network can be built
over the virtual infrastructure of IPv6 networks. This article
analyzes the functional elements including addressing, routing,
and forwarding, and also proposes solutions. In addition, we
also present a series of ongoing 4over6 efforts, including pro-
tocol design, implementation, and deployment.

The rest of the article is organized as follows. We provide
the topology and functional entities of the 4over6 virtualiza-
tion architecture. We propose the addressing, routing, and
forwarding mechanisms. Implementation efforts are described.
We then conclude the article.

The Topology of 4over6 Virtualization
Architecture
4over6 Virtualization Topology

The topology of 4over6 virtualization architecture is shown in
Fig. 1. There are three roles in this architecture:

e Infrastructure provider

 [Pv6 service provider

 IPv4 service provider

The infrastructure provider manages and operates the infras-
tructure substrate. It provides transit services for both IPv4 and
IPv6. The Internet was designed to communicate over diverse
networks. From the data plane perspective, the principle of for-
warding IPv6 packets is not different from forwarding IPv4
packets, so the same physical infrastructure could be utilized. In
practice, service providers often use a large amount of over-
lapped equipment and links for dual stack forwarding.

The IPv6 service provider runs the IPv6 network on the
infrastructure. The IPv6 network carries all the native IPv6 traf-
fic generated by IPv6 end users, forwarding the data packets
from source to destination. Meanwhile, it is also responsible for
forwarding the IPv4 traffic passed down from the IPv4 service
provider. This is achievable by encapsulating IPv4 packets into

Figure 1. 4over6 virtualization architecture.

IPv6, so the IPv6 infrastructure can forward them while the orig-
inal IPv4 packets stay unchanged in the payloads. The IPv6 net-
work receives IPv4 traffic from one of the bridging nodes with
IPv4 network, forwards the traffic to another bridging node, and
hands the traffic back to IPv4. The IPv6 network works as the
virtual infrastructure for the IPv4 networks that connect to it.
The IPv4 service provider manages the IPv4 network over
the physical infrastructure and the virtual infrastructure. The
IPv4 network carries the native IPv4 traffic generated by IPv4
end users and forwards it to the IPv4 destination. When for-
warding the traffic, it can leverage either the physical infras-
tructure or the virtual infrastructure. A forwarding path
between two bridging nodes on the virtual infrastructure cre-
ates a 4over6 instance. In Fig. 1, there are two typical 4over6
models: Mesh and Hub & Spokes. In the Mesh model, multi-
ple IPv4-IPv6 bridging nodes establish 4over6 forwarding paths
with each other to create a mesh-like structure for traffic inter-
changing. In the Hub & Spokes model, multiple IPv4-IPv6
bridging nodes establish 4over6 forwarding paths with one
“hub” bridging node that provides centralized IPv4 access to
them. Generally speaking, the Mesh model reflects the net-
work connectivity problem and appears in the transit network,
while the Hub & Spokes model reflects the host or LAN con-
nectivity problem and appears in the edge network. So far the
combination of these models covers all visible 4over6 demands.

Functional Entities

In 4over6 virtualization architecture, there are two basic func-
tional entities: the bridging node and the IPv4 virtual link.

A bridging node is a dual-stack node that lies on a network
device supporting both IPv4 and IPv6, and connects to both
networks. The term bridging is used because it interconnects
IPv4 and IPv6 network segments, and transfers traffic in
between. The bridging node can natively route and forward
IPv4 and IPv6 packets. It is also capable of transferring IPv4
traffic into IPv6 as well as transferring such traffic back into
IPv4, by means of IPv4-in-IPv6 encapsulation and decapsula-
tion. The ingress bridging node is responsible for delivering
the encapsulated IPv6 packet to the egress bridging node.

According to the two 4over6 models, there are three types
of bridging nodes: the bridging node in the Mesh model is
called the transit virtual router (TVR); the hub node in the

IEEE Network * September/October 2012

45

Hub & Spokes model is called the concentrator virtual router
(CVR); the spoke node is called the initiator virtual router
(IVR). An IVR may lie on an end host in some cases.

A virtual link is the “link” between two bridging nodes in a
4over6 instance. Even though the link may traverse one or
more [Pv6 nodes in the middle, the IPv4 network recognizes it
as a direct-connected link. In the Mesh model, the virtual link
forms between two TVRs. In the Hub & Spokes model, the
virtual link forms between the CVR and IVR (sometimes also
between IVRs). The virtual link is realized by an IPv4-in-IPv6
tunnel. It connects two bridging nodes in IPv4 and makes the
IPv6 path in the middle transparent to IPv4.

Since a 4over6 virtual topology would always be either
Mesh or Hub & Spokes, the diameter of the topology is
always one hop. Therefore, dedicated topology maintenance
will not be necessary. The virtual network works as long as the
bridging nodes are enabled to bridge the IPv4 routing and
data packets over the virtual links.

Packet Flow

In the 4over6 architecture, the end-to-end path between two
IPv4 users can be a combination of IPv4 virtual links and
native links. The packet flow along native IPv4 links follows
the regular IPv4 forwarding process. The packet flow in the
virtual link follows the two 4over6 models.

In the 4over6 Mesh model, every TVR may receive IPv4 pack-
ets from the IPv4 network. The ingress TVR chooses the outgo-
ing virtual link for the packet by using the termination of that
link as the IPv4-in-IPv6 encapsulation destination. The encapsu-
lated packet is sent over the chosen virtual link. Every IPv6 node
along the virtual link forwards the encapsulated packet as a
native IPv6 packet until the packet arrives on the link termina-
tion, which is the egress TVR. This TVR decapsulates the pack-
et, extracts the original IPv4 packet from the payload, and hands
the packet back to the IPv4 network for further forwarding.

In the 4over6 Hub & Spokes model, the CVR and every IVR
may receive IPv4 packets from the IPv4 network. The CVR has
a list of virtual links the termination of which is one of the
IVRs. When the CVR receives an IPv4 packet, it chooses the
outgoing virtual link for the packet by using one of the IVRs as
the encapsulation destination. An IVR usually has only one vir-

tual link, which terminates at the CVR. So when the IVR
receives an IPv4 packet, it will use the CVR as the encapsula-
tion destination. The IPv6 network connecting the CVR and
IVRs will forward the encapsulated IPv6 packet as a native IPv6
packet. When the encapsulated packet arrives on the CVR or
an IVR, it will decapsulate the IPv6 header and hand the IPv4
packet back to the IPv4 network for further forwarding.

Addressing, Routing, and Forwarding of
doverd Virtualization Architecture

In this section, we describe three fundamental elements that
are essential to realize the virtualization. They are

* 4over6 addressing

* 4over6 routing

 Packet encapsulation and decapsulation

4over6 Addressing

In the Hub & Spokes model, the IVR acquires a public IPv4
address for its end users to access IPv4 Internet. These IPv4
addresses are administrated by the CVR, which is the first,
virtual hop of the IVR to access IPv4 Internet. So, the CVR
assigns the IPv4 addresses to the IVRs.

The CVR could share IPv4 addresses to mitigate IPv4
address exhaustion. This is achieved by sharing a single IPv4
address among multiple IPv4 users and assigning different
ports to each user. Two approaches can be applied here: the
CVR can explicitly pre-assign a set of ports to each IVR, or
allocate one port inside the CVR every time a new flow from
the IVRs is encountered. The main difference between the
two approaches is that port-set pre-assignment must be provi-
sioned to the IVR, while the flow-based port allocation can be
processed inside the CVR.

For the pre-assignment approach, the CVR explicitly provi-
sions an address and port-set [6] to the IVR. One implemen-
tation is to leverage native IPv6 address provisioning methods
by means of encoding the IPv4 address and port into an IPv6
address [7]. Another implementation is leveraging IPv4
address provisioning methods, and provisioning the address
and port-set over the virtual link. For the flow-based port

allocation, the usual implementation is net-
work address translation (NAT) on the CVR.

In this approach, the CVR manages the

IPv4 header

IPv4 header

address resources in a NAT pool. The IVRs

IPv4 SRC

IPv4 SRC

IPv4 DST

IPv4 DST

and IPv4 users use private IPv4 addresses for
IPv4 communication. The CVR “NATSs” the

Payload

Payload

private address and port into public when
reaching out to the IPv4 Internet. This is the

IPv4 —

J— |

standard NAT procedure.
The two approaches produce different

network A

IPv6 header
IPv6 SRC
IPv6 DST

IPv4 header
IPv4 SRC
IPv4 DST

Encapsulation:
add IPv6 header

Payload

Decapsulation:
remove IPv6
header

effects. The first approach allocates public
address and port-set to IVRs, so the IPv4
users own a public IPv4 address and port-set,
and the CVR only tunnels the packets
from/to the IPv4 users. This preserves end-to-
end transparency. The second strategy trans-
lates a private IPv4 address to a public IPv4
address on the CVR. This breaks the end-to-
end transparency. There is another consider-
ation. Pre-assigning port-sets to IPv4 users
brings fairness between users by giving each

Pv6 |

| user a certain amount of port, but it does not

network

Ingress Egress

consider actual usage. Contrarily, NAT on
the CVR brings better port utilization than

Figure 2. Packet encapsulation and decapsulation.

port-set pre-assignment, but it does not have
a per-user port amount guarantee.

46

IEEE Network * September/October 2012

4over6 Routing

In 4over6 virtualization, the general isolation of IPv4 and IPv6
routing processes is required. In spite of that, some IPv6-
related IPv4 routing issues should be solved to achieve 4over6
data forwarding, either across or inside IPv6.

The first routing issue is IPv4 routing across an IPv6 net-
work. In the Mesh model, each TVR is connected to some
IPv4 networks. The TVR is responsible for advertising the
IPv4 prefixes of the networks to its TVR peers. This routing
process distributes the reachability and encapsulation informa-
tion. In the route advertisement of these IPv4 prefix, the next
hop is the TVR’s IPv6 address. There are two options:

* Embed the IPv4 prefix in a special IPv6 prefix and send it
over the IPv6 routing protocol
* Extend the IPv4 routing protocol and enable it to use an

IPv6 address in the next hop field
This requires running the IPv4 routing protocol over the IPv6
network between TVRs.

The second routing issue is virtual IPv4 routing in an IPv6
network. In the Hub & Spokes model, which encodes the IVRs’
IPv4 address and port-set into IPv6 address, the IVRs actually
use the encoded IPv6 addresses for IPv6 communication, par-
ticularly for IPv4-in-IPv6 tunnel. Therefore, this type of address
should be reachable in the IPv6 network. This is achieved by
native IPv6 routing, which should also by default aggregate
these addresses. In general, virtual IPv4 addressing and routing
are reflected by normal IPv6 addressing and routing.

In both cases, the IPv6 routing of the native IPv6 prefixes
remains unchanged. The IPv4 prefixes in the 4over6 virtualization
are independent of the IPv6 routing, which makes the IPv4 reach-
ability decoupled from IPv6 routing as long as IPv6 reachability
can be guaranteed. When IPv6 reachability is broken, the bridging
nodes can detect it (e.g., through keep-alive messages in IPv6),
mark it as a virtual link failure, and reflect this in IPv4 routing.

Packet Encapsulation and Decapsulation

In 4over6 virtualization, the packets cross the IPv4 and IPv6
virtual networks by encapsulation and decapsulation, as shown
in Fig. 2. The basic principle of encapsulation and decapsula-
tion is simple: when performing encapsulation, the ingress
bridging node inserts an IPv6 header to the IPv4 packet. The
encapsulated packet will have the destination IPv6 address of
the egress bridging node. This packet will be forwarded
natively in the IPv6 network. When performing decapsulation,
the egress bridging node removes the IPv6 encapsulation
header and extracts the original IPv4 packet. The egress virtu-
al node will forward the IPv4 packet natively in the IPv4 net-
work. All these data plane procedures can be implemented in
hardware, so performance will not be an issue. There are two
challenges, though, that need to be addressed.

The first challenge is encapsulation destination address.
The ingress bridging node is responsible for deciding the IPv6
encapsulation destination address. This address should guide
the packet toward the correct egress bridging node. One pro-
posal is maintaining an encapsulation table for lookup. In the
Mesh model, a mapping entry in this table would consist of an
IPv4 prefix and an IPv6 TVR address, installed during 4over6
routing; in the Hub & Spokes model, a mapping entry would
consist of an allocated IPv4 address and port-set against an
IVR’s IPv6 address, or a NAT entry along with an IVR’s IPv6
address, depending on the addressing strategy. There is anoth-
er proposal when the IPv4 address and port-set is encoded in
the IPv6 address. In this case the encapsulation destination
can be calculated from the IPv4 destination following the
address-encoding algorithm. This solution does not require
information maintenance, and the communication between
two IVRs will not need a “hairpin” on the CVR.

o
©

o
E)

)
3,

106

Peak rate (b/s

100k

104L

1 1 1]
2011/7/1 2011/10/1 2012/1/8

Date

L 1
2011/1/8 2011/4/1

Figure 3. Traffic volume of 4over6 mesh TVR in CNGI.

The second challenge is the maximum transmission unit
(MTU). Encapsulation decreases the effective MTU size of
the IPv4 packet, which could easily result in unexpected frag-
mentation and reassembly. The simplest solution is to increase
the MTU of the links in the IPv6 network for the encapsula-
tion overhead. However, there are cases in which operators
cannot do that; then they have no choice but to deal with
fragmentation. One solution is to decrease the MTU on the
IPv4 upstream link of the ingress bridging node so that all the
fragmentation happens in IPv4 before the packet enters the
tunnel, and the reassembly is left to the destination end users.
The other solution requires the ingress node to handle the
fragmentation in IPv6 after encapsulation, and the egress
node to handle the reassembly in IPv6 before decapsulation.
This way the tunnel becomes purely transparent. However, it
brings strict requirements to the egress devices for handling
significant amounts of reassembly.

Current Status of 4overé Implementations

In the past couple of years, the authors have been designing
and standardizing 4over6 protocols in the IETF Softwire
Working Group. The authors proposed Softwire Mesh [§-10]
as the protocol for the Mesh model. In Softwire Mesh the
TVRs leverage MP-BGP over IPv6 to advertise IPv4 prefixes
and form the encapsulation table. As for the Hub & Spokes
case, different protocols are developed for different addressing
strategies. For flow-based port allocation, the authors designed
Dual-Stack Lite [11], in which the CVR uses the IVR’s IPv6
address to create the NAT binding; for address and port-set
preprovisioning, Public 4over6 [12] and Lightweight 4over6
[13] are proposed, with DHCPv4 over IPv6 as the signaling
method; for embedding IPv4 information in an IPv6 prefix, the
community has designed the 4RD protocol [14].

Efficient device implementation is necessary for these mech-
anisms, especially on TVR and CVR devices that must support
vast amounts of flows, users, and traffic, and therefore require
high capacity. On the control plane, 4over6 routing and
addressing protocols such as Dynamic Host Configuration Pro-
tocol (DHCP) should be implemented in software. All these
protocols can be developed by extending some existing proto-
cols on current routers or servers. The encapsulation and
decapsulation must be implemented by hardware to meet the
capacity and performance requirements. In particular, the
encapsulation table can be implemented by ternary content
addressable memory (TCAM). The destination lookup proce-
dure follows standard TCAM operation, and the TCAM can be
regularly updated with the new entries from route advertise-
ment or address provisioning. 4over6 virtualization adds no new
requirement to TCAM implementation.

IEEE Network * September/October 2012

47

~_ IPv6 UAN

IPv4 Internet

e IVR
IVR

S

Campus users

or running IPv4 routing protocol over 4over6 tun-
nels. The virtual IPv4 routing leverages native IPv6
routing based on the addressing scheme. The
4over6 forwarding is achieved by encapsulation and
decapsulation on the bridging node, in which the
encapsulation destination can be either looked up
from a maintained encapsulation table or calculat-

‘J@ IVR ed following the address encoding algorithm.
_____________ % The 4over6 virtualization architecture is an IPv6

transition framework that provides guidelines for
transition mechanism design, including Softwire
Mesh, Dual-Stack Lite, and Public & Lightweight
IVR 4over6 protocols. These protocols have different
pros and cons, as well as application scenarios.

Figure 4. Public 4over6 deployment in CNGIL.

We have actually deployed two 4over6 virtualization mecha-
nisms, Softwire Mesh and Public 4over6 in China Next Genera-
tion Internet (CNGI). The Softwire Mesh deployment set up
100 TVRs in 100 campus networks. These 100 TVRs are con-
nected through the China Education and Research Network 11
(CERNET?2) IPv6 backbone, and 1 TVR amongst them peers
to IPv4 Internet. This 4over6 Mesh is used to transport IPv4
traffic between different campus networks, as well as to provide
IPv4 Internet connectivity to CERNET2 campus networks. This
network has been running for over a year. Figure 3 shows the
traffic on the TVR peering to IPv4 Internet. Through the past
year, the traffic volume has significantly increased. In the Public
4over6 deployment, we set up a CVR in an IPv6 regional net-
work, and provided the CVR with a 1 Gb/s uplink to IPv4
Internet, as shown in Fig. 4. A software tool was developed to
provide IVR functions to Microsoft Windows 7 and Linux PC.
Each user who had installed the software tool could obtain an
IPv4 access from the CVR even though the PC was connected
to an IPv6-only LAN. This system has been deployed in campus
networks for more than six months, and we are in the process
of adding Lightweight 4over6 function in the system.

Conclusion

This article describes a 4over6 virtualization architecture for
IPv4-IPv6 coexistence, in which IPv4 and IPv6 services are
implemented in separate virtual networks on the same infras-
tructure. The IPv4 virtual network can use the IPv6 network
as virtual infrastructure to access IPv4 services. Nevertheless,
the isolation between the IPv4 and IPv6 networks are sus-
tained as a benefit of the virtualization.

The 4over6 virtualization architecture relies on IPv6 as the
virtual infrastructure, and it solves the IPv4 connectivity prob-
lem in IPv6. As a result, it will significantly ease the adoption of
IPv6. On the other hand, once the majority of Internet applica-
tions and ICPs turn to IPv6, this virtualization architecture can
be removed from the network without influence on IPv6. The
overhead of running 4over6 includes the operation costs of
4over6 addressing and routing and the hardware costs to sup-
port tunneling. However, since all the costs happen on a small
portion of network nodes, deploying 4over6 virtualization is still
much more lightweight than developing a full dual-stack Inter-
net. It also significantly saves the limited IPv4 address resources
compared to a dual-stack Internet.

4over6 virtualization can be implemented in various ways.
The IPv4 address provisioning can be implemented by explicit
allocation of pre-assigned address and port-set, or carrier-
grade NAT on CVR. The IPv4 routing over IPv6 can be
implemented by embedding IPv4 prefixes into IPv6 prefixes,

They have been standardized or are being actively
worked on in the Internet Engineering Task Force
(IETF). They can be implemented efficiently, and
some of them have been deployed in CNGI.

Acknowledgments

This work is supported by the 973 Program of China (nos.
2009CB320501, 2009CB320503) and the NSFC project (nos.
61120106008, 60911130511).

References

[1] N. Niebert et al., “Network Virtualization: A Viable Path towards the
Future Internet,” Wireless Pers. Commun., 2008, vol. 45, pp. 511-20.

[2] N. M. M. K. Chowdhury and R. Boutaba, “Network Virtualization: State
of the Art and Research Challenges,” IEEE Commun. Mag., July 2009.

[3] E. Nordmark and R. Gilligan, “Basic Transition Mechanisms for IPvé
Hosts and Routers,” IETF RFC 4213, Oct. 2005.

[4] F. Baker et al., “Framework for IPv4/IPvé Translation,” IETF RFC 6144,
Apr. 2011.

[5] J. Saltzer, D. Reed, and D. Clark, “End-to-End Arguments in System
Design,” ICDCS 1981, pp. 509-12.

[6] R. Bush et al., “The Address plus Port (A+P) Approach to the IPv4
Address Shortage,” IETF RFC 6346, Aug. 2011.

[7] O. Troan et al., “Mapping of Address and Port,” IETF draft, Nov. 2011.

[8] J. Wu et al., “Softwire Mesh Framework,” IETF RFC 5565, June 2009.

[9] J. Wu et al., “The Transition to IPvé, Part I: 4overé for the China Edu-
cation and Research Network,” IEEE Internet Computing, May 2006.

[10] Y. Cui et al., “The Transition to IPvé, Part Il: The Softwire Mesh
Framework Solution,” IEEE Internet Computing, Sept./Oct. 2006.

[11] A. Durand et al., “Dual-Stack Lite Broadband Deployments Following
IPv4 Exhaustion,” IETF RFC 6333, August 2011.

[12] Y. Cui et al., “Public IPv4 over Access IPvé Network,” IETF draft, Sept. 2011.

[13] Y. Cui et al., “Lightweight 4overé in Access Network,” IETF draft, Oct. 2011.

[14] T. Murakam et al., “IPv4 Residual Deployment on IPvé Infrastructure
— Protocol Specification,” IETF draft, Sept. 2011.

Biographies

YONG Cul (cuiyong@tsinghua.edu.cn) is an associate professor at Tsinghua
University, China. He has published two IETF RFCs on IPvé transition tech-
nologies and co-chairs the IETF Softwire Working Group, which focuses on
tunneling technology for IPvé transition.

PENG WU is a Ph.D. candidate at Tsinghua University, China. His research
interests include IPvé transition and next-generation Internet.

MINGWEI XU is a full professor at Tsinghua University. His research interests
include computer network architecture, high-speed router architecture, and
network security. He is the co-author of one transition protocol RFC.

JIANPING WU is a full professor at Tsinghua University. As the pioneer of IPvé,
he built the largest native IPvé backbone in the world as the China Education
and Research Network Il, and received the Jonathan B. Postel Award from
the Internet Society in2010. He co-authored four IPvé-related IETF RFCs.

Ywu L. Lee works in the CTO office at Comcast.

ALAIN DURAND is a director in the IPG/CTO group at Juniper Networks. He
is also the co-chair of IETF IPvé transition WG, Softwire, and has published
14 RFCs.

CHRIS METZ is a technical leader in the Routing Technology Group for
Cisco Systems. He is a specialist in IPvé transition and has co-authored
four IETF RFCs.

48

IEEE Network * September/October 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

