
15IEEE Network • September/October 2012 0890-8044/12/$25.00 © 2012 IEEE

he networking research community regularly proposes
new protocols and services for production networks to
improve their overall performance. To validate the
effectiveness of new protocols and services, it is impor-

tant to experiment with them under realistic topologies and data
traffic patterns. It is ideal to have such experimentation directly
performed atop the production networks where the protocols
and services are to be deployed. However, experimentation in
production networks is a challenging issue, since it may involve
changes in the underlying routers or hardware components and
disrupt the normal operations of existing applications.

There has been an extensive body of work on the construc-
tion of large-scale experimental testbeds for the evaluation of
networking protocols and services. There are two classes of
experimental testbeds. The first class is offline, in which net-
work performance is provisioned in advance and emulated by
the replay of network events collected in advance. Examples
include Emulab [1] and DETER [2]. However, the controlled
environments of off-line testbeds lack the realism, as the
experiment environments are relatively static. Another class of
experimental testbeds is online, in which experimentation is
conducted atop a shared physical network infrastructure.
Examples include Planetlab [3] and VINI [4], both of which
are developed atop the Internet. Online testbeds provide a
more realistic setting for network experiments, as they actually
reflect the current network conditions of the Internet.

However, there are still design limitations in online testbeds
to achieve full realism. In particular, they do not specifically
mirror the connectivity view of the underlying physical network.
Normally, link failures in physical networks are directly notified
by router hardware, and the detection delay is generally within

100 ms [5]. Suppose that a physical link has failed. While the
physical network reacts to the link failure (e.g., by rerouting),
the physical link failure and the topological change of the phys-
ical network may not be immediately exposed to the experi-
mental testbed layered above. Thus, the physical network and
the experimental testbed will have different connectivity views,
leading to inaccurate observations of network experiments.

In this article, we propose a virtual network architecture
called VegaNet, which serves as an experimental testbed atop
a production network, with an emphasis on mirroring a con-
sistent connectivity view of the underlying physical production
network in a timely and accurate manner. This enables net-
work experiments to be conducted in a more realistic setting.
To summarize, this article makes the following contributions:
• We analyze the failure traces we collected from CERNET2

[6], a national production network deployed in China. We
study the failure characteristics of a typical production net-
work so as to motivate the design of VegaNet.

• We design and implement VegaNet. We propose a
lightweight adaptive probing algorithm to detect the status
of physical links. Our algorithm extends the Bidirectional
Forwarding Detection (BFD) approach [7], such that the
probing frequency is reduced if the current traffic load of
the physical network is high. This avoids overloading the
physical network under heavy traffic load. Our algorithm
has a simple design that is as easily implemented as BFD,
while preserving accurate and timely failure inference.

• We build VegaNet based on network virtualization, so that
it allows multiple experiments to be simultaneously hosted.
We prototype VegaNet using off-the-shelf software and
protocols for practical deployment. We conduct an exten-

TT

Mingwei Xu and Qi Li, Tsinghua University
Patrick P. C. Lee, The Chinese University of Hong Kong

Yanhai Peng and Jianping Wu, Tsinghua University

Abstract
To explore the effectiveness of network protocols and services, it is desirable to
deploy and evaluate them under a realistic network setting. However, experimenta-
tion in production networks is difficult in practice, since it may involve modifica-
tions of underlying routers or other hardware components and disrupt the normal
operations of existing protocols. We propose VegaNet, a virtual network architec-
ture that provides an experimental platform atop a physical production network.
VegaNet uses a lightweight probing mechanism to provide a consistent connectivi-
ty view as in the underlying physical production network so that experimentation
can be performed under realistic network conditions. It uses virtualization to host
multiple experiments on a single physical machine, while reflecting the current con-
nectivity status to each hosted experiment in an accurate and timely manner. We
prototype VegaNet and empirically evaluate its effectiveness atop a real-life pro-
duction network that is currently deployed nationally.

VegaNet: A Virtualized Experimentation
Platform for Production Networks with

Connectivity Consistency

LI LAYOUT_Layout 1 9/13/12 11:27 AM Page 15

IEEE Network • September/October 201216

sive experimental study to validate the practicality of Vega -
Net atop CERNET2. We deploy VegaNet nodes at 12 sites
of the CERNET2 backbone. Our experimental results
demonstrate that VegaNet can accurately reflect the con-
nectivity status of CERNET2.

Problem Statement
We start with analyzing the failure traces collected on CER-
NET2, a national IPv6 backbone that interconnects more than
200 educational institutions in China. It consists of 25 points of
presence (PoPs) that span the whole country. Based on our
observations, we motivate the problem of maintaining consistent
connectivity views between the virtual and physical networks.

We collected six months of failure events on CERNET2
from August 2010 through January 2011. In the CERNET2
backbone, we deployed eight traceroute servers, each of which
generates traceroute probes to all 25 PoPs every 50 ms. Within
the six-month span, we observe a total of 12,715 link failures.
Among all the 62 links that are covered by our measurements,
around 80 percent of them experience at least one failure. The
distribution is heavy-tailed, and around 20 percent of the links
have at least 1000 failures. All the failures we observed are
short-term, and will recover to the normal state afterward.
About 13 percent of the failures last for less than 500 ms, and
over 96 percent of the failures last for less than 5 s. Thus, link
failures are not uncommon, and it is crucial to expose such fail-
ures for network experiments in virtual networks.

Problem of Inconsistency
We are interested in building a virtual network for network
experiments atop a production network, such that the virtual
network serves as an experimental testbed to reflect the realis-
tic behavior of the underlying network, capturing most (if not
all) network events occurring in the network. We observe that
most failures are short-term, and it is challenging to capture
them. Existing virtual networks (e.g., Emulab [1], PlanetLab
[8], and VINI [4]) provide experimental platforms that can
address connectivity and resource provisioning. However, to
the best of our knowledge, none of the existing virtual net-
works specifically provides solutions to accurately and quickly
capturing the current connectivity status of the physical net-
work. Enabling the virtual network to mirror the physical net-
work connectivity is crucial so that network experiments are
conducted under the current data forwarding conditions in the
underlying physical network.

Unfortunately, mirroring the physical network connectivity in
a virtual network is a nontrivial task. In particular, if the physi-
cal network experiences a link failure, then we argue that this
can lead to inconsistent views in both the virtual and physical
networks. To motivate, Fig. 1 shows a small-scale virtual net-
work, in which we attach a virtual router VRi to a physical
router Ri, where i = 1, 2, 3, 4. Ideally, the virtual network

should have a consistent view of the connectivity status as in
the physical network. Figure 1a illustrates this ideal scenario, in
which no link failure occurs. Suppose now that link R1–R3 fails.
Then there are three scenarios where inconsistency can occur:
• After failure detection (Fig. 1b). Both physical routers, R1

and R3, detect the failure of link R1–R3 and trigger routing
reconvergence. However, virtual routers VR1 and VR3 may
still treat link R1–R3 is intact and will not immediately
recompute new routes.

• After rerouting (Fig. 1c). R1 and R3 reroute and form the
route R1–R2–R4–R3, with four hops. If VR1 and VR3 do not
update the routing status immediately, they will treat the
route VR1–VR3 as directly connected with only one hop.

• After failure recovery (Fig. 1d). New routes, such as
VR3–VR4, may be formed in the virtual network during the
failure of R1–R3. If link R1–R3 is recovered, R1 and R3
revert to using the original route R1–R3 as in Fig. 1a, so the
physical route between R3 and R4 switches back to
R3–R1–R2–R4. However, VR3 and VR4 may not yet capture
this change immediately and still believe VR3–VR4 is a
one-hop route.

From the above examples, there are at least two inconsistent
views between the virtual and physical networks:
• The virtual network cannot quickly capture link failures

observed by the physical network.
• The virtual routes and the physical routes have different

hop information.
This inconsistency is further complicated by the fact that net-
work failures are prevalent in production networks, and most
of the failures are short-term. Thus, the virtual and physical
networks can often have inconsistent views.

To maintain the connectivity consistency, a naive approach
is to have the physical routers report the up-to-date connectivi-
ty status immediately to their attached virtual routers, but this
“bottom-up” approach requires re-engineering of the physical
routers and is generally infeasible. A more practical approach
is to have virtual routers generate frequent probes using tracer-
oute. However, traceroute involves a large volume of probes
and may overload the physical network. More important,
traceroute may be disabled in physical routers, especially in a
production network, due to the privacy issue [9]. Therefore,
this article aims to address the following question: How can we
develop a virtual network that provides connectivity and resource
provisioning for network experiments as in existing platforms [1,
4, 8], while maintaining accurate and timely consistent connectiv-
ity views between the virtual and physical networks?

Overview of VegaNet
We propose VegaNet, a virtual network architecture that pro-
vides an experimental platform atop a physical production
network. Its main goal is to maintain a consistent connectivity
view between the virtual and underlying production networks

Figure 1. An example: inconsistency between physical and virtual routes occurs at different stages after network failure occurs: a) stage
1: consistency between physical and virtual routes before failure; b) stage 2: inconsistency between physical and virtual routes after fail-
ure detection; c) stage 3: inconsistency between physical and virtual routes after rerouting; d) stage 4: inconsistency between physical
and virtual routes after failure recovery.

Physical links

(a)

R2

R4

R3

R1

VR1 VR3

VR4

VR2

(b)

R2

R4

R3

R1

VR1 VR3

VR4

VR2

(c)

R2

R4

R3

R1

VR1 VR3

VR4

VR2

(d)

R2

R4

R3

R1

VR1 VR3

VR4

VR2

Routes in physical routers (physical routes) Routes in virtual routers (virtual routes)

LI LAYOUT_Layout 1 9/13/12 11:27 AM Page 16

IEEE Network • September/October 2012 17

so that network experiments running atop the virtual network
are conducted under the realistic data forwarding conditions
of the physical network. In this section, we overview the
design of VegaNet, and justify the design features achievable
by VegaNet.

VegaNet is a network of nodes that can be deployed on
regular PCs or servers. Each VegaNet node can be viewed as
a software-based virtual router. It is based on software imple-
mentation and supports the basic routing functionalities as
seen in a physical router. It is directly attached to a produc-
tion router and seeks to maintain the same connectivity view
as the production router. In this setting, virtual links between
two neighboring VegaNet nodes are used to emulate physical
links between neighboring production routers to which they
are attached. To host multiple network experiments, we divide
the resources (e.g., CPU, memory) of a VegaNet node into
slices, each of which can be independently owned by a net-
work experiment. VegaNet nodes interconnect with each
other through tunneling and exchange control information.
Note that VegaNet does not require re-implementation of the
production routers and hence it will not interfere in the pro-
duction network operations.

At a high level, a VegaNet node allows different network
experiments to have their own routing protocols, network ser-
vices, and data/control planes. Figure 2 shows an architectural
view of VegaNet when it is deployed in a production network.
The packets of different new network protocols, such as
OpenFlow [10] and DONA [11], can be generated by external
users, and multiplexed into VegaNet nodes and their attached
physical routers. Packets with different protocols will be
encapsulated with new IP packet headers in VegaNet nodes.
The destinations of the new packets are set to their neighbor
Vega Net nodes according to the corresponding forwarding
information base (FIB). Thus, these packets can be delivered
between VegaNet nodes by the production routers. Each Veg-
aNet node works like a physical router as it for-
wards packets over the production network.
When the packets reach the destination VegaNet
node, they are demultiplexed into the corre-
sponding applications.

At a low level, a VegaNet node provides rout-
ing and forwarding separation for different net-
work experiments. Figure 3 shows the internal
implementation of a VegaNet node. We divide
the routing operations of a VegaNet into different
slices for network experiments. We implement a
router manager (RM), which is responsible for
managing all slices. Each slice has its own control
object (CO), which determines the routing policy
specifically within the slice (or experiment). Each
CO computes the forwarding entries based on its
routing policy. The forwarding entries of all COs
will then be aggregated in a FIB (flow 1, Fig. 3).
There can be multiple FIBs, each of which corre-

sponds to a network protocol with its own address
format. For example, DONA and OpenFlow may
have their own FIBs. We implement a forwarding
object (FO), which manages all FIBs. To forward
a packet, the FO looks up the FIB with regard to
the network protocol and forwards each packet to
the correct network interface. By separating the
routing and forwarding functions, the slices do not
need to coordinate with each other on how to
interact with the low-level (i.e., hardware) network
interfaces for packet forwarding, which is now
centrally handled by the FO. In addition, inside
the RM, we implement a forwarding detection

object (FDO), which is responsible for detecting connectivity
changes as indicated in the FIB (flow 2, Fig. 3), and notifying
the changes to the COs in different slices so that they can
recompute new routes (flow 3, Fig. 3).

VegaNet seeks to achieve the following design features:
• Flexible and realistic experimentation: We multiplex traffic

with different network protocols into the underlying pro-
duction network. This multiplexing operation is transparent
to the user applications. Aside from the user traffic in
Vega Net, the underlying production network also carries
the regular traffic within its operation. Such traffic provides
a realistic workload pattern for network experiments in
Vega Net. The similar design feature has also been
addressed in the literature (e.g., VINI [4]).

• Fair resource allocation: Resources within a VegaNet node,
such as CPU and memory, are exclusively used by specific
slices (or COs) [12]. Also, based on the existing perfor-
mance isolation mechanism for virtualization, we can pro-
vide fair resource allocation for different slices.

• Consistent connectivity views: In each VegaNet node, we
unify all forwarding operations of different slices in the FO,
which can then easily capture the connectivity status in the
physical network by monitoring whether packets can be suc-
cessfully forwarded. Thus, each experiment hosted in a
VegaNet node can obtain a consistent connectivity view
with the physical network.

Achieving Connectivity Consistency
To achieve connectivity consistency in an accurate and timely
manner, we leverage active probing, in which each VegaNet
node sends probes to its neighbors, and determines immedi-
ately if there is any connectivity failure or the failure is recov-
ered. Here, we propose a lightweight adaptive probing
algorithm that generates probes based on the current traffic

Figure 2. The architectural view of VegaNet atop a physical network.

OpenFlow

OpenFlow

DONA

DONA

IP

IP

VegaNet

Substrate
network

Figure 3. The internal implementation of each VegaNet node.

Slice 2

Control
object

(1) Route update (2) Status monitoring (3) Failure notification

Data flowControl flow

Forwarding information base

Forwarding
object

Slice 1

Control
object

Forwarding
detection object

(3)

(2)

(1) (1)

Router manager

LI LAYOUT_Layout 1 9/13/12 11:27 AM Page 17

IEEE Network • September/October 201218

conditions. The probing algorithm is implement-
ed in the FDO of each VegaNet node.

Session Establishment
In VegaNet, each pair of neighboring VegaNet
nodes will have a session, which is used for nego-
tiating control parameters and monitoring con-
nectivity changes in the physical network between
the nodes. A session can be viewed as a virtual
link between the neighboring VegaNet nodes.
Here, we maintain sessions by extending the state
machine design in BFD [7] in a virtualized net-
work. Although we leverage the basic procedure
of BFD for probing, BFD keeps generating
probes based on the negotiated probing intervals,
without taking into account the current traffic
conditions in the data plane. If the data plane is
occupied with application traffic, the probes may
further overwhelm the network capacity. We
adapt the BFD design to account for the current
network traffic conditions, as detailed later.

Each BFD session has three states:
• DOWN: the session is torn down
• INIT: the session is to be initiated
• UP: the session is established
During session establishment, the pair of neighboring Vega Net
nodes (call them VR1 and VR2) will negotiate two sets of
parameters: the hop count and the probing parameters. For the
hop count, its main goal is to maintain the connectivity consis-
tency between VR1 and VR2. The hop count is defined as the
number of physical links between two nodes. For example, if the
physical routers R1 and R2 are directly connected, the hop count
is given by 3, which includes links VR1–R1, R1–R2, and R2–VR2.
We then set the time to live (TTL) field in the IP header of the
probing packets to be equal to the hop count (e.g., 3 if R1 and
R2 are directly connected). The intuition is that if the link
between R1 and R2 fails and packets are rerouted, the VegaNet
nodes will not receive probing packets from each other, as each
probing packet can traverse at most three hops. Thus, the Veg-
aNet nodes can infer that rerouting occurs and can align its con-
nectivity status with that in the physical routers.

For the probing parameters, they are mainly used for speci-
fying the time for detecting a network failure. For each Veg-
aNet node VR i, the probing parameters include three
constants [7]: the Desired Minimal TX Interval (TX i),
Required Minimal RX Interval (RXi), and Detect Multiple
(DMi). TXi and RXi are the minimum sending and receiving
intervals supported by the VegaNet node VRi, respectively,
while DMi denotes the probing timeout period represented as
a multiple of the probing interval. Some typical values of such
parameters are TXi = 50 ms, RXi = 50 ms, and DMi = 3
(e.g., [13]). This implies that VRi sends probes every 50 ms
and expects to receive probes from each of its neighbors every
50 ms. If VRi does not receive probes from a neighbor for
RXi ¥ DMi = 150 ms, it may declare that the link to the
neighbor is failed. The probing parameters are included in the
control packets during the session establishment process so
that they can be agreed upon by both of the neighboring Veg-
aNet nodes. It is important to note that each VegaNet node
can customize its own set of probing parameters, for example,
according to its available link bandwidth.

Lightweight Failure Identification
In VegaNet, each VegaNet node sends probes to each of its
neighbors to determine if the virtual link between the node
itself and the neighbor has failed, according to the current traf-
fic conditions. VegaNet consists of two types of packet flows:

• The control packet flow: session establishment and probing
• The data packet flow: application traffic generated by the

user applications
Both the control and data flows are interleaved and forward-
ed by the FO in each VegaNet node. The intuition here is
that if a VegaNet node (say VR1) can always send data traffic
to its neighbor (say VR2), we can infer that the virtual link
VR1–VR2 is good and has no failure, without the need to gen-
erate additional probes. On the other hand, suppose the
neighboring VegaNet nodes have no data traffic in between,
because either the user applications do not generate any data
traffic or the virtual link has failed. In this case, they generate
probes based on the negotiated probing parameters. If no
probes are received between the nodes, we can infer that the
virtual link has failed.

Algorithm 1 shows the pseudo-code of our adaptive prob-
ing algorithm, which is called by each VegaNet node (say
VRx) to initiate the sending of probing packets. It extends
BFD [7] to account for the data plane condition. First, VRx
initializes the packet receiving timer (denoted r i) and the
packet sending timer (denoted ti) associated with its neigh-
boring VegaNet node VRi (steps 1 to 5). For ri, it is set to
DMx ¥ max(RXx, TXi). For ti, it is set to r ¥ max(TXx, RXi),
where r is uniformly selected at random between two con-
stants bmin and bmax such that 0 £ bmin < bmax < 1. Here, we
choose r at random so as to avoid self-synchronization of
probing among the neighboring VegaNet nodes [7]. Also, we
generally set bmax less than 1 to ensure that the probes reach
the other side before the detection timeout (e.g., they may be
delayed due to congestion). Here, in our current implementa-
tion, we set bmin = 0.75 and bmax = 0.9.

For each neighbor VRi in VR[1..n] of VRx, if there is traffic
sent from VRx to VRi, VRx can reset the timer ti instead of
generating additional probes (steps 7–8). Also, if a probe is to
be generated, the TTL of the probe is set to the negotiated
hop count to ensure that the probe reaches the neighbor only
if the underlying link works (i.e., there is neither failure nor
rerouting) (steps 9–10). In the meantime, VRx checks if it
receives any traffic from VRi before the packet receiving
timer ri expires. If not, it means that the virtual link VRx–VRi
has failed (steps 12–14).

Algorithm 1 follows the simplicity of design as in BFD [7]
and does not add complicated logic, making it easily imple-
mentable. We show that the simple design sufficiently achieves
our goal of maintaining the connectivity consistency between
the virtual and underlying production networks.

Algorithm 1. Adaptive probing algorithm in VRx.

Input: n neighboring VegaNet nodes and probing parameters:
{VR1, TX1, RX1), …, (VRn, TXn, RXn)};

Output: set of failed links: FailedLinkSet;
1: for VRi in VR[1..n] do
2: set timer ri’s value = DMx ¥ max(RXx, TXi);
3: randomly select r Œ [bmin, bmax];
4: set timer ti’s value = r ¥ max(TXx, RXi);
5: end for
6: for VRi in VR[1..n] do
7: if (exists traffic sent to VRi before timer ti expires) then
8: reset timer ti before it expires;
9: else
10: send a probe with the negotiated hop count;
11: end if
12: if (no traffic from VRi when timer ri expires) then
13: Add failed link VRx – VRi to FailedLinkSet;
14: end if
15: end for
16: return FailedLinkSet;

LI LAYOUT_Layout 1 9/13/12 11:27 AM Page 18

IEEE Network • September/October 2012 19

Evaluation
We implement a proof-of-concept prototype for VegaNet.
VegaNet is built on off-the-shelf software and protocols. Each
VegaNet node is built on the virtualization platform Xen [12].
We conduct microbenchmark and macrobenchmark experi-
ments for our VegaNet prototype. We deploy VegaNet in a
small-scale testbed (Fig. 4) and CERNET2.

Summary of results: We show that VegaNet can immedi-
ately detect link failures in the underlying physical network
(experiments 1–2) while generating fewer probing packets
than BFD [7] (experiment 3). Also, VegaNet captures well the
behavior of Open Shortest Path First (OSPF) convergence
occurring among the physical routers (experiment 4). Finally,
we validate that VegaNet behaves correctly when it is actually
deployed in the production network CERNET2.

Microbenchmarks in Testbed Deployment
In microbenchmark experiments, we aim to study different per-
formance aspects of VegaNet subject to the characteristics of
real-life failure traces. To achieve this, we replay the failure
events we collect from CERNET2 on a small-scale VegaNet
testbed as shown in Fig. 4. Our VegaNet testbed is a full-mesh
topology composed of three software-based physical routers
that form a physical network. Each physical router is attached
to a VegaNet node. Each of the physical routers and VegaNet
nodes is deployed on an Intel Xeon Quad Core machine that
runs Linux. We create a single guest domain, DomU, in each
VegaNet node, and form a virtual network atop the testbed.
We install the open source router software Quagga [14] in each
physical router and the DomU domain in each VegaNet node.
Both the physical and virtual networks run the OSPF protocol.

To simplify our study, we replay all failure events only on
the physical link R1–R2. To regenerate a link failure, we dis-
able the link R1–R2 for a duration recorded in the corre-
sponding failure event, and re-enable the link.

We argue that the performance of VegaNet is generally
independent of network size and the number of links being
simultaneously monitored. Note that VegaNet nodes detect
the connectivity status by investigating the data and control
traffic between each neighboring node pair independently. The
effectiveness of our link failure detection between one neigh-
boring node pair is mainly related to the communication per-
formance of that pair, instead of being influenced by the
failures occurring in other node pairs.

Experiment 1 (Failure Detection Delay in VegaNet) — In this
experiment, we evaluate the connectivity consistency between
VegaNet and its underlying physical network. We measure the
failure detection delay in VegaNet, defined as the duration
starting from when a failure occurs in the physical link R1-R2
until the failure is captured in Dom0. We configure the follow-
ing probing parameters: TX = RX = 50 ms and DM = 3. Fig-

ure 5a shows the failure detection delay in VegaNet vs. the
failure events. We observe that the failure detection delay is in
the range of 90–135 ms. Note that it is smaller than the maxi-
mal detection time DX ¥ max(TX, RX) = 150 ms, as a failure
occurs during the interval of waiting for the next probe after
the last one. The results indicate that VegaNet detects failures
correctly with regard to the configured probing parameters.

Experiment 2 (Failure Duration Observed in VegaNet) — We now
compare the deviation of the failure duration observed in Veg-
aNet. Figure 5b shows the failure duration observed in Dom0
of a VegaNet node vs. the actual duration of corresponding
physical failures, which last for less than 5 s, accounting for 96
percent of the failures we collected. In general, there is negligi-
ble deviation between the failure durations in VegaNet and the
physical network. The communication overhead between the
physical and virtual networks is fairly insignificant with respect
to failure duration. We also evaluate the differences of the fail-
ure durations observed in Dom0 and DomU. We observe that
the detection delay between Dom0 and DomU is minimal, and
the ratio is bounded with 0.05 percent.

Experiment 3 (Failure Detection under Different Background Traf-
fic) — We now evaluate how our adaptive probing algorithm
fully leverages user traffic to reduce probing overhead for fail-
ure detection. We re-conduct experiments 1–4 with user traf-
fic generated between VR1 and VR2, and make similar
observations we present above. In this experiment, we only
compare the communication overhead introduced by VegaNet
with and without background traffic (i.e., user traffic).

Figure 5c shows the cumulative number of probing packets
generated by VegaNet with and without background traffic.
Note that without background traffic, our probing approach is
in essence the BFD approach [7], which generates probing
packets at a constant rate. In the experiment, we shut down
link R1–R2 at time 20 s and re-enable it at time 40 s, and the
whole experiment period lasts for 60 s. First, we launch one
DomU in VR1 and VR2 and generate FTP traffic between
them in the time range from 10 to 60 s. We observe that the
number of probing packets is significantly reduced when back-
ground traffic is present. The number of overall probing pack-
ets is reduced by 45 percent. Note that VegaNet will still
generate probing packets in the presence of background traf-
fic, as FTP application does not generate traffic in every 50
ms probing interval. In particular, VegaNet still generates
probing traffic in two directions during 40 to 45 s although the
link failure recovers, because TCP will not send FTP traffic
once the failure recovers.

Moreover, we launch two DomUs in VR1 and VR2 simulta-
neously, and generate UDP traffic and FTP traffic between
these two DomUs, respectively. As shown in Fig. 5c, VegaNet
does not generate probing packets in one direction, but it still
generates probing packets in the other direction between 40 s
and 45 s since FTP and UDP both do not have traffic in this
direction. Overall, we validate that VegaNet will not generate
any probing traffic if there is user traffic in each probing
interval. Actually, if we directly leverage BFD [7] to detect
network events in this experiment, it will generate and inject
about 1300 probing packets into the physical network (Fig.
5c). The results demonstrate that VegaNet effectively saves
the communication overheads with regard to different back-
ground traffic.

Experiment 4 (OSPF Convergence Performance Comparison
between Virtual Routers and Physical Routers) — We now evalu-
ate if VegaNet maintains consistency of routing convergence as
in the underlying physical network. Here, we study OSPF per-

Figure 4. Testbed topology.

VegaNet

VR3

VR1

VR2

PC3

PC1

PC2

R3

R2

R1

LI LAYOUT_Layout 1 9/13/12 11:27 AM Page 19

IEEE Network • September/October 201220

formance by investigating the log files in physical and virtual
routers. In this experiment, we compare the performance with
BFD running in physical routers with the same probing param-
eters setting as in VegaNet (i.e., RX = TX = 50 ms and DM =
3). We shut down link R1–R2 several times and compute the
average convergence performance. Each shutdown period lasts
about 120 s. We then compare different completion times of
OSPF of each router. We also generate FTP traffic as back-
ground traffic as in experiment 5.

Figure 5d shows OSPF convergence performance of different
routers. We find that the convergence performance in different
routers is similar. The virtual routers only have marginal conver-
gence time delay compared to the physical routers by 13.46 per-
cent, because the probing packets in the virtual routers need to
traverse more nodes. Overall, each VegaNet node has a routing
view consistent with its attached physical router.

Macrobenchmarks in CERNET2 Deployment
To evaluate VegaNet in a real production network, we deploy
our VegaNet prototype atop CERNET2. We deploy 12 Vega -
Net nodes by attaching them to the backbone routers at 12
sites in 10 cities in China. Note that we only configure and
evaluate VegaNet between two neighboring nodes, which can
be treated as a full deployment experiment on a partial CER-
NET2 network.

In our deployment, we again configure the probing
parameters TX = RX = 50 ms and DM = 3 for each
VegaNet node. We use traceroute data as the baseline.
In order to obtain more accurate time records of net-
work events in CERNET2, we reduce the traceroute
probing period to 20 ms. Note that here traceroute will
capture failures between the VegaNet nodes, but not in
the whole network. Thus, within the three-week span,
we only observe a total of nine link failures.

Experiment 5 (Failure Detection and Deviation in CERNET2) —
In this experiment, we measure the failure detection delay in
VegaNet. Figure 6 shows that failure detection delay in Veg-
aNet versus the failure events by traceroute in CERNET2.
We observe that the failure detection delay is in the range of
115–190 ms, which is larger than that in our testbed (Fig. 4)
because of the larger link transmission delay in CERNET2.
The five failure detection delays shown in Fig. 6 are smaller
than the maximal detection time DX ¥ max(TX, RX) = 150
ms. In addition, we observe that the later four failure delays
are larger than the maximal detection time. The reason is that
traceroute may send out probing packets before failures occur
and then detects the failures earlier than they occur. The
results indicate that VegaNet correctly detects all link failures
in real deployment.

Figure 5. Failure detection performance in testbed: a) (experiment 1) failure detection delay; b) (experiment 2) failure duration; c)
(experiment 3) detection overhead; d) (experiment 4) OSPF convergence.

Node number
10

100

0

C
on

ve
rg

en
ce

 t
im

e
(m

s)

200

300

400

2 3

Physical router
Virtual router

Event number (103)

(a)

2.50

40

20

Fa
ilu

re
 d

et
ec

ti
on

 d
el

ay
 (

m
s)

60

80

100

120

140

5 7.5 10 12.5 15

Time (s)

(c)

100

200

0

Pr
ob

in
g

pa
ck

et
s

(#
)

400

600

800

1000

1200

1400

20 30 40 50 60

Link down duration (103 ms)

(b)

(d)

0.50

0.5

0

D
et

ec
te

d
du

ra
ti

on
 (

10
3

m
s)

1

1.5

2

2.5

5

3

3.5

4

4.5

1 1.5 2 2.5 53 3.5 4 4.5

Without background traffic
With 1 DomU
With 2 DomUs

LI LAYOUT_Layout 1 9/13/12 11:27 AM Page 20

IEEE Network • September/October 2012 21

We also compare the deviation of the failure duration
observed in VegaNet when it is deployed in CERNET2. Fig-
ure 6 shows the failure duration observed in VegaNet nodes
vs. the detected duration of the corresponding physical failure
by traceroute. In general, there is negligible deviation between
the failure durations in VegaNet and the detected traceroute
results if failure durations are larger (events 4–7 in Fig. 6).
However, since some failures we captured in CERNET2 last
for a very short duration (i.e., less than 100 ms), the differ-
ence ratio of these failures is fairly large. Overall, all failure
deviations are bounded within 8.0 percent.

Summary: We show that VegaNet can effectively main-
tain connectivity consistency with underlying production
networks, while introducing low overheads into the underly-
ing networks. We have more experiment results to demon-
strate the effectiveness and efficiency of VegaNet. For
example, we measure and compare packet drop rate in
physical networks and Vega Net under different network
events. We observe similar results in these two networks.
Also, since VegaNet detects network events between two
neighboring virtual routers, multiple link failures will not
impact failure detection performance. We confirm this by
implementing VegaNet in the NS2 simulator and evaluate
the case of multiple failure by simulations under real Inter-
net service provider topologies and traffic matrices of Abi-
lene and GEANT. We find that failure detection
performance under multiple failures is similar to that under
a single failure.

Related Work
Several studies propose experimental network platforms [1, 4,
8]. Some of them have been deployed atop the Internet and
made available to the public, such as PlanetLab [8] and Emu-
lab [1]. These platforms provide a realistic working environ-
ment for experimenting with network behaviors. On the other
hand, to our knowledge, VegaNet is the first testbed platform
designed for production networks, the specialized deployment
environments of which may lead to unique characteristics as
opposed to the Internet.

Software defined networking (e.g., OpenFlow [10]) uses
network virtualization in its designs, which enables concur-
rent experiments of different network services and protocols
in production networks [10]. Different from these SDN
designs, VegaNet aims to provide experiment platforms in
current production networks with the existing network archi-
tecture.

Conclusions
We propose VegaNet, a virtual network architecture that
enables network experiments to be built atop real production
networks. VegaNet accurately and timely captures the real-
time connectivity status of the physical network, thereby
allowing hosted experiments to be conducted in a consistent
connectivity view. We propose a lightweight adaptive probing
approach to ensure connectivity consistency between real pro-
duction networks and VegaNet. We prototype VegaNet and
extensively evaluate the correctness of VegaNet based on a
real-life production network, CERNET2.

Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China under Grant No. 61073166; by the National
Basic Research Program of China (973 Program) under Grant
No. 2012CB315806; and by the National High-Tech Research
and Development Program of China (863 Program) under
Grant No. 2011AA01A101. The work of Patrick P. C. Lee is
supported in part by grant GRF CUHK413711 from the
Research Grant Council of Hong Kong.

References
[1] B. White et al., “An Integrated Experimental Environment for Distribut-

ed Systems and Networks,” Proc.OSDI, 2002, pp. 255–70.
[2] Deterlab testbed, http://www.isi.edu/deter/.
[3] Planetlab, http://www.planet-lab.org/.
[4] A. Bavier et al., “In Vini Veritas: Realistic and Controlled Network

Experimentation,” Proc. SIGCOMM, 2006, pp. 3–14.
[5] A. Markopoulou et al., “Characterization of Failures in an Operational IP

Backbone Network,” IEEE/ACM Trans. Net., vol. 16, 2008, pp. 749–62.
[6] China Education and Research Network 2 (CERNET2),

http://www.edu.cn.
[7] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),” RFC

5880, July 2010.
[8] L. Peterson et al., “Experiences Building Planetlab,” Proc. OSDI, 2006.
[9] L. Subramanian, V. R N. Padmanabhan, and R. H. Katz, “Geographic

Properties of Internet Routing,” Proc. USENIX ATC, 2002.
[10] R. Sherwood et al., “Can the Production Network be the Testbed?,”

Proc. OSDI, 2010.
[11] T. Koponen et al., “A Data-Oriented (and Beyond) Network Architec-

ture,” Proc. SIGCOMM, 2007, pp. 181–92.
[12] P. Barham et al., “Xen and the Art of Virtualization,” Proc. SOSP,

2003, pp. 164–77.
[13] Cisco, Bidirectional Forwarding Detection, http://www.cisco.com/en/

US/docs/ios/12_0s/feature/guide/fs bfd.html.
[14] Quagga, http://www.quagga.net/.

Biographies
MINGWEI XU (xmw@cernet.edu.cn) received B.Sc. and Ph.D. degrees from
Tsinghua University. He is a full professor in the Department of Computer
Science at Tsinghua University. His research interests include computer net-
work architecture, high-speed router architecture, and network virtualization.

QI LI (liqi@csnet1.cs.tsinghua.edu.cn) received B.Sc. and Ph.D. degrees
from Tsinghua University. His research interests include network architec-
ture and protocol design, system and network security.

PATRICK P. C. LEE (pclee@cse.cuhk.edu.hk) received his B.E. degree (first class
honors) in information engineering from the Chinese University of Hong Kong
in 2001, his M.Phil. degree in computer science and engineering from the Chi-
nese University of Hong Kong in 2003, and his Ph.D. degree in computer sci-
ence from Columbia University in 2008. He is now an assistant professor in the
Department of Computer Science and Engineering at the Chinese University of
Hong Kong. His research interests are in network robustness and security.

YANHAI PENG (pengyanhai@gmail.com) received B.Sc. and M.Sc. degrees
from Shandong University and Tsinghua University, respectively. His
research interests include network measurement and network virtualization.

JIANPING WU (jianping@cernet.edu.cn) received Master’s and Ph.D. degrees
in computer science from Tsinghua University. He is now a full professor with
the Department of Computer Science, Tsinghua University. He has published
more than 200 technical papers in academic journals and proceedings of
international conferences in the research areas of network architecture, high-
performance routing and switching, protocol testing, and formal methods.

Figure 6. Experiment 5: failure detection performance in CER-
NET2.

Event number
1

50

0 0

5

D
et

ec
ti

on
 d

el
ay

 (
m

s)

D
ev

ia
ti

on
 r

at
io

 (
pe

rc
en

t)

-5

10

100

150

200

2 3 4 5 6 7 8 9

Detection delay
Deviation ratio

LI LAYOUT_Layout 1 9/13/12 11:27 AM Page 21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

