Computer Networks xxx (2011) Xxx-xxx

Contents lists available at SciVerse ScienceDirect

Mputer
Computer Networks @j‘yyrks

journal homepage: www.elsevier.com/locate/comnet

Selecting shorter alternate paths for tunnel-based IP Fast ReRoute

in linear time ™

Mingwei Xu, Yuan Yang™*, Qi Li

Department of Computer Science & Technology, Tsinghua University, China

ARTICLE INFO

ABSTRACT

Article history:

Received 26 May 2011

Received in revised form 26 September 2011
Accepted 11 November 2011

Available online xxxx

Keywords:

IP routing

Fast rerouting
Tunnel

Fast Tunnel Selection

IP Fast ReRoute (IPFRR) has received increasing attention as a means to effectively
shorten traffic disruption under failures. A major approach to implementing IPFRR is to
pre-calculate backup paths for nodes and links. However, it may not be easy to deploy such
an approach in practice due to the tremendous computational overhead. Thus, a light-
weight IPFRR scheme is desired to effectively provide cost-efficient routing protection. In
this paper, we propose a Fast Tunnel Selection (FTS) approach to achieve tunnel-based
IPFRR. FTS approach can find an effective tunnel endpoint before complete computation
of entire SPT and thus effectively reduce computation overhead. Specially, we propose
two FTS algorithms to provide protection for networks with symmetric and asymmetric
link weights. We simulate FTS with topologies of different sizes. The results show that
FTS approach reduces more than 89% computation overhead compared to the existing
approaches, and achieves more than 99% average link protection rate and more than 90%
average node protection rate. Moreover, FTS approach achieves less than 15% path stretch,
which is better than the existing approaches.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fast evolution of network applications requires high
availability and stability of Internet routing. However, the
Internet routing is not well resilient to failures. A link or
node failure will trigger routing convergence during which
routes are rebuilt among routers, and traffic may be

* This journal version is an extension of our conference paper “A
Lightweight [P Fast Reroute Algorithm with Tunneling”, which is
published in the proceedings of international conference on communi-
cation (ICC) [1]. This journal version makes the following extensions to
the conference paper: we address rerouting path selections in networks
with symmetric link weights to improve the protection efficiency; we
prove that the overall computational complexity of rerouting path
selection algorithm with symmetric link weights is linear with respect
to the number of nodes and links; we evaluate our proposed algorithms
using large-scale real topologies to demonstrate the performance of our
scheme in production networks, and discuss the application scenarios of
different IPFRR approaches.

* Corresponding author. Tel./fax: +86 10 6278 5822.

E-mail address: yyang@csnet1.cs.tsinghua.edu.cn (Y. Yang).

1389-1286/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2011.11.006

disrupted during this period. Generally, link state routing
protocols require several seconds for convergence. Thus,
they cannot provide immediate connectivity to all routers
after failures [2]. To address this issue, IP resilience to
ameliorate fault recovery is gaining increasing attention.

IP Fast ReRoute (IPFRR) [3] provides a potential tech-
nique to improve IP resilience in intra-domain routing.
IPFRR switches traffic to backup routes quickly after fail-
ures occur, and greatly shorten the interruption period to
tens of microseconds with the help of fast failure detecting
techniques [4]. In general, IPFRR approaches can be imple-
mented by different backup path selection algorithms,
most of which need to consume lots of router resources,
e.g., CPU cycles, and may exacerbate router performance.
Thus, computation overhead introduced by existing IPFRR
schemes is significant.

To reduce the computation overhead, several improved
tunnel-based IPFRR solutions are proposed. Li et al
reduced the number of shortest path tree (SPT) computa-
tion with the Notvia approach in IPFRR [5] so that a router
only needs to calculate a few SPTs. Enyedi et al. improved

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006
mailto:yyang@csnet1.cs.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.comnet.2011.11.006
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2011.11.006

2 M. Xu et al./ Computer Networks xxx (2011) xxX—Xxxx

—— Link
—— 1SPT rooted at node J

——————— » Backup path which protects link /-/

Fig. 1. A sub-set of CERNET2 [7] topology where solid lines denote links,
dashed arrows denote a backup path from node I to node J, and solid
arrows denote the reverse shortest path tree (rSPT) rooted at node J,
which is consisted of all the shortest paths to node J. Node I will shift
traffic to node R in order to enable the backup path in case that link I — |
fails.

the Notvia approach by applying redundant trees [6]. The
computing time is reduced by an order of magnitude,
and the time is only in the range of hundreds of millisec-
onds. Unfortunately, the overhead of these proposals is still
large because they need to compute the entire SPT whose
computational complexity is O(|E| + |V|log|V|), where E is
the set of links and V is the set of nodes. Moreover, existing
IPFRR does not well consider the path stretch issue. That is,
IPFRR may result in large end-to-end delay and bandwidth
waste.

Example: Let us use a topology shown in Fig. 1 as an
example to understand the computation overhead and
the path stretch problem in traditional IPFRR schemes. In
traditional IPFRR, backup routing paths are found by com-
puting reverse shortest path tree (rSPT) rooted at each
node. rSPT is consisted of all the shortest paths to a desti-
nation node and is also called a sink tree. For example,
node I computes the rSPT rooted at node J to protect link
I —J, and the number of operations in this computation
is about 32! using the Dijkstra algorithm. Normally, it is
not necessary to compute the entire rSPT. Instead, we only
compute the reverse shortest path from node J to its neigh-
bor R and check if it can provide a backup path, and then the
number of operations is only 12.5. The example is not spe-
cial. In general, we only need to compute a small part of
rSPTs. Furthermore, the path stretch introduced by tradi-
tional IPFRR schemes is not always optimal. For example,
the protection path via node R’ is longer than that via node
R, however, existing approaches may not select node R as the
protection endpoint since they did not consider decreasing
path stretches during backup path selections.

In this paper, we propose a light-weight backup path
selection approach to achieve efficient tunnel-based IPFRR.
The approach introduces little computation overhead and
the rerouting paths only incur small path stretches. We
first propose a Symmetric Fast Tunnel Selection (SymFTS)
algorithm to select rerouting paths in networks with
symmetric link weights. In SymFTS, we select a tunnel
endpoint according to traditional routing information in
Interior Gateway Protocol (IGP), i.e., Link State Data Base

! The number of operations may differ with different implementations of
the Dijkstra algorithm, but the trends are similar.

(LSDB) and the calculated SPT. The algorithm has a linear
computational complexity in each node, i.e. O(2|E| + |V]).
In particular, in topologies where the links are sparse, the
saving will be more significant, and the path stretches in-
curred will be much smaller.

Furthermore, we propose an improved algorithm called
Asymmetric Fast Tunnel Selection (AsymFTS) to improve
protection effectiveness of networks with asymmetric link
weights. The algorithm marks nodes that can be reached
without traversing a component under protection, e.g., link
or node. A marked node will be chosen as the tunnel end-
point immediately once we determine that the shortest
path from the marked node to the node at the other side
of the component does not traverse the component. In this
way, the AsymFTS algorithm finds an effective tunnel end-
point before the end of the entire SPT computation, and
thus effectively reduces computation overhead. The Asym-
FTS algorithm introduces small path stretches as well as
the SymFTS algorithm.

We evaluate our algorithms by simulation. The simula-
tion results show that our algorithms decrease the compu-
tation overhead by at least 89% compared to existing
approaches, such as LFA [8], Uturns [9], Tunnels [10] and
Notvia [11]. In particular, our proposed algorithms provide
more than 99% average link protection rate and more than
90% average node protection rate, which is much better
than LFA and close to Uturns and Notvia. Moreover, our
algorithms achieve less than 15% path stretch, which is
better than the existing approaches.

The remainder of the paper is organized as follows. In
Section 2, we present the background and related work.
Our algorithms are proposed in Sections 3 and 4. We eval-
uate our algorithm in Section 5. Section 6 discusses the
application scenarios of different IPFRR approaches. Sec-
tion 7 concludes the paper.

2. Background and related work

Reactive and proactive approaches are two major tech-
niques for IP resilience [12]. Reactive approaches aim at
shortening the convergence time of routing protocols,
and proactive approaches, which are also called protection
approaches, aim at reducing packet-loss by rerouting pack-
ets to backup paths.

Reactive approaches can deal well with multiple link
failures. A typical approach is to shorten the convergence
time for IGP [2]. However, if failed links recover faster than
routing convergence, routing flap may occur. Proactive ap-
proaches, such as IPFRR, can handle single link or node fail-
ure within a very short time. They do not advertise failure
information when failures are detected, and provide net-
work connectivity by rerouting the traffic to the backup
paths. Since failure detection and backup path activation
only last a short time, these approaches can protect against
failures quickly.

Several approaches are proposed to implement IPFRR,
such as Loop Free Alternates (LFA) [8], Uturns [9], Tunnels
[10,13], and Notvia addresses [11]. All these approaches
use tunnels or directed forwarding to deliver packets in
backup paths. The LFA approach utilizes neighbors’

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

M. Xu et al./Computer Networks xxx (2011) Xxxx—xxx 3

shortest paths to build protection paths. Thus, extra SPTs
rooted at the neighbors must be computed. The Uturns ap-
proach considers neighbors’ neighbors as alternate nodes
to forward traffic, and extra SPTs rooted at the nodes with-
in two hops must be computed. Similarly, the Tunnels ap-
proach also uses alternate nodes called tunnel endpoints to
build protection paths. The Tunnels approach also needs
several extra SPT computations. The Notvia approach uses
Notvia addresses to indicate failure identities and distrib-
utes these Notvia addresses in the network. Packets encap-
sulated with the addresses are steered round failures. Thus,
an extra SPT computation is required for each Notvia ad-
dress. To improve the efficiency of IPFRR, combination of
LFA and Notvia is also proposed. However, Menth et al.
found that the combined usage of both methods has no
advantage compared with applying Notvia addresses only
[14]. These approaches all require computing several extra
entire SPTs [15].

2.1. Traditional Tunnels approach

In the traditional Tunnels approach, node I is supposed
to protect the links connecting with its neighbor nodes. In
order to find protection paths, target nodes which poten-
tially can provide protection for failed links or nodes must
be identified first. Generally, all neighbors of node I are trea-
ted as the targets to protect links, and nodes who are the two-
hop neighbors of node I are treated as the targets to protect
nodes.? After identifying targets, a tunnel endpoint must
be chosen for each target. A tunnel endpoint N is a node to
which node I sends encapsulated packets when it detects a
failure between nodes I and J, and it decapsulates the pack-
ets and enables normal packet forwarding.

Node I must insure that the packets can reach their des-
tinations by detouring the failure, i.e. without looping back
to node I. Let us assume that we need to protect link [— J.
Node N would be an effective tunnel endpoint when the
following conditions hold:

J ¢ SP(I,N), 1)
I ¢ SP(N.J), (2)

where SP(I,N) indicates the shortest path from node I to
node N. If we compute the cost of packet forwarding with
the shortest path, Eqgs. (1) and (2) can be rewritten as

cost(l,N) < cost(l,]) + cost(J,N), (3)
cost(N,]J) < cost(N,I) + cost(I,]). (4)

Now let us briefly review how a tunnel endpoint is selected
in the traditional Tunnels mechanism [10].

Step 1. A set of nodes which can be reached from node I
by normal forwarding without traversing link
I —] is calculated. It is termed as Pspace of node
I with respect to link I — J. The Pspace can be
obtained by SPT(I) with all nodes that are reached
via link I — J pruned.

2 In this paper, for simplicity but without loss of generality, we assume
that networks under protection do not contain equal cost multi-path.

Step 2. A set of nodes which can reach node J without tra-
versing link I — J is calculated. This set is termed
as Qspace of node J with respect to link I — J.
Qspace can be obtained by computing a reverse
shortest path tree (rSPT) rooted at node J and
pruning the nodes that reach node J via link I — J.

Step 3. The set of candidate tunnel endpoints candi-
dates(J) is the intersection between Pspace and
Qspace. We can directly select the tunnel endpoint
from the set candidates(J).

To provide a node protection instead of link protection,
the procedure is similar to above, therefore we do not
repeat it here. It is obvious that the Tunnels approach
consume a lot of CPU cycles for computing rSPT(J). Mean-
while, the traditional approach does not discuss how to se-
lect a tunnel endpoint from candidates(J). A poor selection
of tunnel endpoint may incur large path stretch.

2.2. Related works

Lots of studies improved tunnel-based IPFRR solutions
to reduce the computation overhead. Li et al. [5] found that
protection paths do not traverse many nodes and thus
these nodes do not need to compute extra SPTs for these
paths. However, a node still needs to compute many paths
which traverse it, especially when failures are connected to
the node. Ho et al. [13] proposed a tunnel endpoint selec-
tion algorithm so that the network performance is opti-
mized after the repaired paths are activated for rerouting.
However, the complexity is high and even higher than tra-
ditional Tunnels approach. Enyedi et al. [6] decreased the
number of required Notvia addresses by reformulating
rerouting path computations in terms of redundant trees.
Each node computes a single pair of redundant trees and
the overall computational complexity is O(|E| +|V]). How-
ever, the address management and path stretch issues
are not well addressed. In summary, these improved IPFRR
schemes fail to effectively reduce the overhead since they
did not consider reducing several extra SPT computations.

Moreover, Kini et al. [16] proposed a tunnel-based pro-
posal which provides resilience for up to two link failures.
The approach requires three protection addresses for every
node besides the normal address. Every protection address
is associated with a protection graph, and thus it brings
large management and computation overhead. Nelakuditi
et al. [17] proposed a local rerouting approach called fail-
ure insensitive routing. The approach prepares rerouting
paths under failures using interface-specific forwarding.
They computed forwarding and backwarding tables with
the available shortest path first (ASPF) algorithm which
computes the shortest paths excluding the unavailable
(potentially failed) links. The complexity of ASPF is
O(|E| x log?(]V])). Ray et al. [18] presented a backup path
selection algorithm named Distributed Path Computation
with Intermediate Variables (DIV) which guarantees that
the directed graph (i.e., routing paths) induced by the rout-
ing decisions remains acyclic at all times. DIV uses a non-
shortest path routing and thus increases path stretch.
Francois et al. [19] proposed an approach to progressively
change link weights to ensure stable and loop-free routing

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

4 M. Xu et al. / Computer Networks xxx (2011) Xxx—xxx

path changes. However, each link weight change requires a
new SPT computation. Kvalbein et al. [20] proposed an ap-
proach to protect against single failure by using multiple
routing configuration. Each link is isolated in at least one
configuration to provide protection. Kwong et al. [21] pro-
posed protection routing to deliver packets without tun-
neling when a failure occurs. Similar to the traditional
IPFRR, these schemes did not consider reducing computa-
tion overhead and path stretch.

3. Fast Tunnel Selection for symmetric link weights

In networks with symmetric link weights, it is well
known that cost(l,]) = cost(J,I) for any node pair I and J.
Based on this property, we can obtain some useful theo-
rems for fast tunnel endpoint selection by Graph Theory.
Link and node protections can be considered separately be-
cause we have different considerations of tunnel endpoint
selection though the basic idea is similar and achieves
linear computational complexity.

The notations used in this paper are summarized in
Table 1.

3.1. Link protection

In order to protect link I — J, we set node J as the target
node just like in traditional Tunnels approach. However,
we use the conception of subtree instead of Pspace and
Qspace. subtree (I,]) is the node set whose reverse shortest
paths to node I traverse node J, where J is a neighbor of L
According to the definitions of Pspace, Qspace and subtree,
we obtain

V — Pspace(l,I — J) = subtree(l,]), and
V — Qspace(J,I — J) = subtree(/,I).

Due to the definition of candidates(J), we obtain
candidates(J) = V — subtree(J,I) — subtree(l,]). (5)

The following theorem shows the candidate node space for
tunnel endpoint selections, and we can effectively limit the
search range to reduce computation overhead.

Theorem 3.1. In a network with symmetric link weights,
there is a link R — R s.t. R € subtree(l,]) and R € candi-
dates(]), if I -] € SP(1,]) and candidates(]) # ®.

Proof. The proof is by contradiction. Suppose there is not
any link R - R’ s.t. R € subtree(l,]) and R’ < candidates(J).
Thus for any node R’ in candidates(J), the links originated
from node R’ only connect to nodes in V — subtree(l,]).
Due to Eq. (5), V — subtree(l,J) equals candidates(J) + sub-
tree(J,I), because the intersection of subtree(/,I) and sub-
tree(l,]) is empty. Therefore, SP(R’,J) must traverse some
nodes in subtree(J,I). Due to the symmetry of link weights,
the shortest path from the nodes in subtree(J,I) to node J
must traverse node I, so I € SP(R,J). This contradicts to
R € candidates(J). O

Fig. 2 illustrates an example explaining Theorem 3.1.
We can get subtree(l,]) (the gray nodes shown in Fig. 2)
by computing SPT(I). Theorem 3.1 gives a simple way to
find possible tunnel endpoints: traverse subtree(l,J) and
check each nodes’ neighbors which are not included in
subtree(l,]). We have the following theorem to identify a
tunnel endpoint from the node space obtained by Theorem
3.1.

Theorem 3.2. In a network with symmetric link weights,
R' € candidates(]) if the following conditions hold: (1)
I -] eSP(]);(2) There is a linkR — R’ s.t. R € subtree(l,])
and R’ ¢ subtree(l,J)andR’ # I; and (3)

2 - cost(I,]) > cost(I,R) — cost(I,R’) + cost(R,R). (6)

Proof. The proof is generally obtained by deducing from
Inequation (6).

According to the fact that cost(l,J) is equal to cost(J,I)
(which always holds under a network connected with
symmetric link weights) and Inequation (6), we obtain

cost(J,1) + cost(I,R') > cost(I,R) + cost(R,R') — cost(l,]).
(7)

According to that R € subtree(l,J), we obtain

cost(l, R) = cost(I,]) + cost(J,R). (8)

We can rewrite Eq. (7) with the value of cost(I,R) in Eq. (8),
and obtain

cost(J,I) + cost(I,R’) > cost(I,]) + cost(J, R) + cost(R,R')
— cost(L,]).

Table 1
Summary on notations.
Notation Meaning
Graph(V,E) The network topology with vertex (node) set V and edge (link) set E
LJK,N,R,R',R",R;,R; Nodes in V. I often denotes the node connected to a failure and J often denotes the target node
I-] A directed link from node I to node J
SP(1J) Shortest path from node I to node |
SPT(I) Shortest path tree rooted at node [
rSPT(I) Reverse shortest path tree rooted at node I
cost(l)) Cost of shortest path from node I to node J

candidates]
Pspace (II - J)
Pspace (I,K)
Qspace (JI - J)
Qspace (J,K)
subtree(1))

The set of candidate tunnel endpoints for target node J

The set of nodes that node I reaches using normal forwarding without traversing link I — J
The set of nodes that node I reaches using normal forwarding without traversing node K
The set of nodes that can reach node J using normal forwarding without traversing link I — J
The set of nodes that can reach node J using normal forwarding without traversing node K
SPT(I)’s subtree which is rooted at node J

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

M. Xu et al./Computer Networks xxx (2011) Xxxx—xxx 5

—w— Link with assigned weight w
——» SPT rooted at node /

Fig. 2. An example network topology. Grey nodes are in subtree(l,). Node
R and node R” are neighbors of node R and are in candidates(J).

Thus, cost(R',I) + cost(I,]) > cost(J,R) + cost(R,R") > cost(J,R')
As cost(J,R’) is equal to cost(R',J), we obtain

cost(R',I) + cost(l,]) > cost(R',]). 9)
Moreover, since R’ ¢ subtree(l,J), we obtain
cost(I,R') < cost(I,]) + cost(J,R'). (10)

According to Inequations (9) and (10), we can obtain
R € candidates(J). O

The key condition in Theorem 3.2 is Inequation (6). The
values in Inequation (6) are directly obtained from Link
State Data Base (LSDB), i.e. cost(l,]) and cost(R,R’), and from
computing SPT(I), i.e. cost(I,R) and cost(I,R"). Since SPT(I) is
calculated and stored in the traditional IGP protocols, we
can directly identify whether node R’ is a tunnel endpoint.

Note that, since Inequation (6) is a sufficient but not
necessary condition, the Inequation may not hold if node
R’ is a tunnel endpoint. The example in Fig. 2 illustrates
the case, where R” is a tunnel endpoint, but

2 - cost(l,]) = cost(I,R) — cost(I,R") + cost(R,R") = 6.

In this example, packets sent by I to J will traverse R’
and R’ — R” twice if we use R” as the tunnel endpoint after
link I — J fails. This is a path-overlapping problem which
causes unnecessary path stretches. Fortunately, we can
solve the problem by selecting a tunnel endpoint which
provides the shortest protection path. Here, the length of
protection paths can be calculated quickly by:

cost(I,R') + cost(R',]) = cost(I,R’) + cost(R,R') + cost(R,])
= cost(I,R’) + cost(R,R) + cost(I,R)
— cost(L]). (11)

We can prove that selecting shortest protection path
never raises path-overlapping (see Lemma 3.2).

Based on the discussions above, we select tunnel end-
points for a network with symmetric link weights as follows.
Firstly, we need to traverse the nodes on subtree(l,J). For
every node R in subtree(l,]), we evaluate if its neighbor R’
is neither node I nor in subtree(l,J). Then, we can find the
R’ which satisfies Inequation (6) and has the shortest protec-
tion path. The pseudo-code is shown in Algorithm 1. The in-
put of SymFTS are SPT(I),] and Graph(V,E). The algorithm will
return a node once the node is chosen as the tunnel end-
point, otherwise return null.

Lemma 3.1. In a network with symmetric link weights, the
computation overhead in each node is O(2|E| +|V|) using the
SymFTS algorithm.

Algorithm 1. The SymFTS Algorithm

Input: SPT(I), J, Graph(V,E);
Output: the tunnel endpoint;

1: mark all the nodes reached from

node [via link I — J with red, making use of SPT(I);
: mark node I with red;
: tunnel_endpoint < null;
: mincost « infinity;
: for each node R in subtree(l,])
for each node R’ which has a link to R

if R is red or
2 - cost(l,]) < cost(I,R) — cost(I,R’") + cost(R,R")

or
cost(I,R’) + cost(R,R’) + cost(I,R)
— cost(l,J) = mincost

8: continue;

9: tunnel_endpoint < R';

10: mincost < cost(,R') +

cost(R,R’) + cost(I,R) — cost(L,));
11: return tunnel_endpoint;

The proof of Lemma 3.1 is trivial. We only show the
proof outline here. To protect the m links connected to I,
we need to run the SymFTS algorithm m times. Note that
each node except node I will only be visited once in the
algorithm (see steps 5-10) and each link will be visited
twice (see steps 6-10). Thus, the computational overhead
of a node is O(2|E| + |V|), which is a linear complexity. Com-
pared to traditional Tunnels approach whose computa-
tional overhead is O(m|E| + m|V|log|V|) at least, SymFTS
achieves much low complexity.

Lemma 3.2. In a network with symmetric link weights, R’ is a
tunnel endpoint selected by SymFTS, and then there does not
exist node R” s.t. R” # R and R" € SP(I,R’) and R” € SP(R’,]).

The proof of Lemma 3.2 can be found in Appendix. Lem-
ma 3.2 states that there does not exist any node in both
SP(I,R') and SP(R',]) with SymFTS. Therefore, SymFTS en-
sures that packets will never traverse a link or a node more
than once when a failure occurs. It effectively reduces end-
to-end delays and saves bandwidth as well as process cost,
which is benefit from a small path stretch.

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

6 M. Xu et al. / Computer Networks xxx (2011) Xxx—xxx

3.2. Node protection

In the situation of protecting a neighbor node K, we set
the target node to a two-hop neighbor J which is on the
shortest path to the destination. Similar to Eq. (5), we
obtain

candidates(J) = V — subtree(J, K) — subtree(I, K).

We can obtain the following Theorems which are similar to
Theorems 3.1 and 3.2.

Theorem 3.3. In a network with symmetric link weights,
there is a link R —» R’ s.t. R € subtree(I,K) and R’ € candi-
dates(J), if 1-Je SP(LK) and |- Ke SP(LK) and
candidates(]) # @.

Theorem 3.4. In a network with symmetric link weights,
R € candidates(]) if the following conditions hold: (1)
I - JeSP(LK)and] —] € SP(I,K); (2) There is a linkR —
R's.t. R € subtree(l,K)andR’ ¢ subtree(l,])andR #1I; (3) 2-
cost(l,]) > cost(l,R) — cost(I,R') + cost(R,R').

Theorems 3.3 and 3.4 states the conditions of node
space and endpoint selection for node protection, respec-
tively. Since the proofs of Theorems 3.3 and 3.4 are similar
to those of Theorems 3.1 and 3.2, we do not repeat it here.
According to Theorem 3.4, we can easily select tunnel end-
points for node protection by simply extending SymFTS
(see Algorithm 1). That is, we can change link I — J to link
I - K in step 1. The computational complexity remains at
O(2[E| +|V|). Note that the algorithm for node protection
will ignore some candidate tunnel endpoints, as we may
overlook some nodes in subtree(l,K) — subtree(l,]) in the
algorithm. As a result, the protection rate may reduce a
little. However, the results are still acceptable (see the
simulation results in Section 5). Here, the protection rate
indicates how many links or nodes can be protected, con-
sidering if the component (i.e., link or node) is used by a
routing path. The formal definition of the protection rate
can be found in Section 5.3.

Protection for asymmetric link weight networks is more
complicated. If we directly apply the SymFTS algorithm in
these networks, routing loops may incur under failures. We
will propose an improved algorithm called AsymFTS to ad-
dress this issue in the following section.

4. Fast Tunnel Selection for asymmetric link weights

In this section, we propose the AsymFTS algorithm to
address tunnel endpoint selection for networks with asym-
metric link weights. Different from that in the networks
with symmetric link weights, we can only know the path
costs from I using SPT(I) in the networks with asymmetric
link weights. Thus, the reverse shortest path from target
node J (rSPT(J)) should be calculated in order to guarantee
that the shortest path from the tunnel endpoint to J does
not traverse the failure component.

However, we believe that it is not necessary to calculate
the entire rSPT because we can mostly identify an effective
tunnel endpoint before finishing rSPT computations. Our

approach is to combine the tunnel endpoint selection pro-
cess with the rSPT computation. In this way, rSPT compu-
tation can be terminated as soon as we identify a tunnel
endpoint. Note that the difference between link protection
and node protection is much less than that in networks
with symmetric link weights, and thus we can consider
them together here. Our goal is to find a tunnel endpoint
if there exists any, either link or node protection.

When there exist several candidate tunnel endpoints,
we select the nearest one to the target node J as the tunnel
endpoint. Normally, the nearest tunnel endpoint to J can be
identified before computation of rSPT(J) finishes. The algo-
rithm called AsymFTS is shown in Algorithm 2. The input of
AsymFTS are SPT(I),] and Graph(V,E) (K is also needed for
node protection). The output is the selected tunnel
endpoint.

In AsymFTS, we calculate reverse shortest path from J
by using the Dijkstra algorithm. We check whether node
R; meets the conditions, i.e., Eqs. (3) and (4), to be a tunnel
endpoint once the reverse shortest path from J to R; is
determined. If R; meets the condition, it will be selected
as the tunnel endpoint and the algorithm stops. Otherwise,
we should start a new round of reverse shortest path calcu-
lation and tunnel endpoint selection. AsymFTS can lever-
age the results obtained by each round of reverse
shortest path calculation to identify the smallest-cost
node, and then find the nearest tunnel endpoint to node J
as early as possible.

As we discussed, SymFTS has a computation complexity
of O(2|E| +|V]). However, AsymFTS leverages the Dijkstra
algorithm to search potential endpoint and will stop
searching once a tunnel endpoint is found. Therefore,
AsymFTS will spend more time to search endpoint than
SymFTS in the networks with low link densities. In the
worst case, when a network has a ring topology, the com-
plexity will be O(|E| +|V|log|V|) and rSPT(J) needs to be
computed. Fortunately, we need much less computation
in most cases, especially in networks connected by a lot
of links. Generally, the computation overhead of AsymFTS
is similar to that of SymFTS in the networks with high link
densities. The following Lemma states the distribution of
tunnel endpoint if there exist more than one endpoint.
The proof of Lemma 4.1 can be found in Appendix.

Lemma 4.1. Node R’ is in candidates(J) if node R' is in
candidates(]), where R" is downstream of R' in rSPT(]).

Link with assigned weight w

Primary shortest path

Protection path

Fig. 3. Protecting link I — J using R” as a tunnel endpoint.

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

M. Xu et al./Computer Networks xxx (2011) Xxxx—Xxxx 7

Algorithm 2. The AsymFTS algorithm

Input: SPT(I), J, Graph(V,E), K for node protection;

Output: the tunnel endpoint;

1: mark all the nodes in subtree(l,]) (or subtree(l,K)
for node protection) with blue, making use of
SPT(I);

2: for each node R; in Graph(V,E)

3: distance[R;]«< infinity;

4. previous|[R;]«< undefined,

5: distance|[]] < 0;

6:Q&V;

7: while Q is not empty

8: R; &« node in Q with the smallest distance]];

9: remove R; from Q;

10: if previous[R;] = I (or K) or previous[R;] is red

11: mark R; with red;

12: if R; is not blue and not red

13: return R;;

14: for each link R; — R; ingoing to R;

15: if distance[R;] > distance[R;] + cost(R;, R;)

16: distance[R;] < distance[R;] +
cost(R;,Ry);

17: previous[Rj] < R;;

18: return null;

Lemma 4.1 does not state whether a tunnel endpoint is
near to node J but state the candidate nodes in the subtree
rooted at a tunnel endpoint. The number of candidate
nodes that hide in the subtree will increase quickly with
the increase of network sizes. In other words, they do not
need to be determined in AsymFTS and thus we can save
lots of CPU cycles.

The following lemma states that AsymFTS solves the
path-overlapping problem. The proof of the lemma can
also be found in Appendix.

Lemma 4.2. Node R’ is the tunnel endpoint which is the
nearest to target node J, then there is no node R” s.t. R # R’
and R” € SP(LL,R') and R" € SP(R’,]).

1e+007 T T T

Let us take an example in Fig. 3 where packets are for-
warded over both two directions of a link. Link costs are all
set to 1 and R” can be used as a tunnel endpoint to protect
link I —J. Packets will traverse link R - R” and link
R’ — R', and traverse node R’ twice, which causes unneces-
sary path stretches. To address this issue, AsymFTS will di-
rectly select R’ as the tunnel endpoint to protect link [— J.
Although protection paths calculated by AsymFTS may not
be the shortest, packets will not traverse any node more
than once.

5. Performance evaluation

In this section, we evaluate our proposed algorithms by
simulation, compared with existing IPFRR approaches,
such as LFA, Uturns, Tunnels and Notvia. We firstly present
methodology for simulating different proposals and then
show simulation results.

We implemented a simulator to implement different
IPFRR proposals, such as LFA, Uturns, traditional Tunnels,
Notvia, and SymFTS and AsymFTS. These proposals have
different strategies to choose alternate nodes when there
are several candidate tunnel endpoints. LFA and Uturns
use random alternate nodes, and traditional Tunnels uses
the nearest tunnel endpoint to node I. We use link/node
protection in our simulation and evaluate end-to-end con-
nectivity under each link/node failure. We use both gener-
ated and real topologies in our simulations.

Firstly, we use two real topologies of Abilene [22] and
CERNET2 [7], to evaluate the performance of different
IPFRR scheme. Secondly, we use 6 real topologies obtained
from rocketfuel [23]. Since the networks in AS 1221 and AS
6461 in [23] are not completely connected and these ASes
consist of different disconnected subnetworks, we only
choose the largest subnetworks in these two ASes and drop
the small ones which include at most 4 nodes. Since the
link weights of publicly available network topologies are
symmetric, for simplicity without loss of generality, we
only evaluate both SymFTS and AsymFTS in networks with
symmetric link weights.

1e+006

100000

10000

1000

avg num of LSDB accessing

100

T T T [. | B
| AsymFTS !
{1 SymFTS |
2 Tunnels
{3 LFA H
M - 7 Uturn

AS1221 AS1239 AS1755 AS3257 AS3967 AS6461 Abilene CERNET2

topology

Fig. 4. Computation overhead with link protection in real topologies.

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

http://dx.doi.org/10.1016/j.comnet.2011.11.006

8 M. Xu et al. / Computer Networks xxx (2011) Xxx—xxx

1e+006 T — T

100000 [

10000

1000

avg num of LSDB accessing

100

© 3 SymFTS
1 Tunnels !
n n =3 LFA
: ZZ7A Uturn 7]
1 Notvia

AS1221 AS1239 AS1755 AS3257 AS3967 AS6461 Abilene CERNET2

topology

Fig. 5. Computation overhead with node protection in real topologies.

Furthermore, we use BRITE [24] to generate some large
scale topologies. The parameters required by BRITE are
based on the studies in [25], where the type is Bottom up
and the router model is RTGLP. The average number of
links per new node is two. The node place follows a hea-
vy-tail distribution and the link costs are based on link
latencies. The number of nodes varies from 10 to 200.
We generate 10 different topologies for each size, and the
results are average values of them.

5.1. Computation overhead

Firstly we evaluate computation overhead of different
proposals. Generally, the basic operations during execution
of the Dijkstra algorithm are Link State Database (LSDB)
accessing, cost comparison and computation. Every LSDB
accessing is a process to search and access Link State
Advertisements (LSA) announced by all routers. LSDB
accessing consumes the majority of CPU cycles and re-
quires much more CPU cycles than the operation of cost
comparison and computation. Thus, in this experiment,
we evaluate the computation overhead by measuring the
number of LSDB accessing.

Figs. 4 and 5 show the number of LSDB accessing in link
and node protection with different real topologies. For link
protection, both SymFTS and AsymFTS introduce much less
computation overhead than existing proposals. For exam-
ple, in AS1239 which has the largest number of nodes,
AsymFTS reduces the number of LSDB accessing by
89.29%, 92.34%, 99.13% and 99.97%, compared to LFA, Tun-
nels, Uturns, and Notvia, respectively. In other topologies,
AsymFTS achieves a similar improvement. Note that Sym-
FTS may perform better than AsymFTS in some networks,
e.g., in AS 1239, and AsymFTS may perform better than
SymFTS in some networks, e.g., in AS 1221, since they
adopt different approaches to identifying endpoints (see
Section 4). AsymFTS normally achieves better performance
in the networks with higher link density because it is easy
to find an effective endpoint during rSPT computatoins. For

example, AsymFTS introduces less overhead than SymFTS
in AS1239 where link density per node is about 3.05, but
SymFTS performs better in AS1221 where link density

LFA —— Notvia ===
& Uturns -~ Henoen Asymgss
“““““ v
% 164007 Tunnels - sym A
8 PN
el oo B
g 1et+006 g Ao
2 achr® KD
& 100000 e VI =
b A < ;()(X
E ‘AX" "rth—ll—lr'll_lD:..f;
210000 B
E 1000 Fx @R z
100 &
10
0 40 80 120 160 200

number of nodes

Fig. 6. Computation overhead with link protection in generated
topologies.

1e+006

oA RRR

100000 & Sal *ﬁ] o B

10000

e

% LFA ——

1000

Notvia: —-&--

avg num of LSDB accessing

100 V/ Uturns © - Ko SymFTS —v—
Tunnels : & | AsynFTS —&—
10
0 40 80 120 160 200

num ber of nodes

Fig. 7. Computation overhead with node protection in generated
topologies.

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

M. Xu et al. / Computer Networks xxx (2011) XXx—xXx

25%— ; - :

| AsymFT!

| 3 SymFTS

| 3 Tunnels
{1 LFA
20%[2 Uturn

15%}-

10%f
5% ”

path stretch

1

AS1221 AS1239 AS1755 AS3257 AS3967 AS6461 Abilene CERNET2

topology

Fig. 8. Path stretch with link protection in real topologies.

25% T

| 3 SymFTS

| 23 Tunnels :
{1 LFA :
20%: 7 Uturn =
{ C— Notvia

15%[M

path stretch

10%

5%

il

AS1221 AS1239 AS1755 AS3257 AS3967 AS6461 Abilene CERNET2

topology

Fig. 9. Path stretch with node protection in real topologies.

per node is only 1.45. For node protection, expect that LFA
achieves similar overhead compared to AsymFTS and Sym-
FTS, the results are similar to link protection.

Figs. 6 and 7 show the number of LSDB accessing in link
and node protection with different generated topologies.
Compared to LFA, Tunnels, Uturns, and Notvia, AsymFTS
reduces the number of LSDB accessing by 89.21%, 90.75%,
98.89%, 99.70%, respectively. For node protection, SymFTS
introduces the least overhead and AsymFTS introduce a
similar overhead to LFA. Thus, the overhead introduced
by SymFTS and AsymFTS with node and link protection is
much less than that by existing proposals. We believe the
introduced overhead is acceptable for real deployment.

5.2. Path stretch

In this experiment, we evaluate forwarding path
stretches introduced by forwarding packets with protec-

tion paths. We compare the length of a protection path
with that of the new shortest path after a failure.

LFA —+— "Notvia —-A-—
35%} Uturns -+ Heeoe SymFTS —s—
Tunnels & AsymFTS —a—
30%
= 25% A
b5 X, DAL B A
£ 20% x/ VD Wt = i
= 4
g 15%
10%
5%
0%
0 40 80 120 160 200

number of nodes

Fig. 10. Path stretch with link protection in generated topologies.

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

M. Xu et al. / Computer Networks xxx (2011) Xxx—xxx

10
LFA —+— Notvia: &=
30% Uturns = o SymFTS§ —v—
° X, Tunnels g AsymFTS "—a—
25%
5
ﬁ 20%
< 15%
<
(=9
10%
5%
0%
0 40 80 120 160
number of nodes
Fig. 11. Path stretch with node protection in generated topologies.

Figs. 8 and 9 show the path stretch results with link and
node protection, respectively. Notvia needs to deliver

average link protection rate

average node protection rate

packets to the other end of a failure and then forward them
to the destinations. Therefore, the length of forwarding
path of Notvia is longer. Similarly, random selections of
alternate nodes in LFA and Uturns also increase the length
of protection paths. The results demonstrate that the pro-
tection paths used by SymFTS and AsymFTS are short, be-
cause packets will not traverse a link or node more than
once. SymFTS can use all the identified shortest alternate
paths, and thus we observe that SymFTS has a shorter path
stretch than AsymFTS in most cases.

Figs. 10 and 11 show the path stretch results in gener-
ated topologies. For link protection, the average path
stretches introduced by LFA, Uturns, Tunnels, Notvia, Sym-
FTS, and AsymFTS are 16.84%, 17.21%, 8.94%, 19.76%, 2.89%,
and 7.79%, respectively. Similar results can be observed in
node protection. LFA, Uturns, Tunnels, Notvia, SymFTS,
AsymFTS introduce 16.69%, 21.44%, 16.70%, 12.26%,
8.11%, and 13.96% of the path stretch.

100%

80%

60%

40%

20%

LFA
; C——1 Uturn

AS1221 AS1239 AS1755 AS3257 AS3967 AS6461 Abilene CERNET2
topology

Fig. 12. Protection rate with link protection in real topologies.

70%

60%

50%)

40%|

30%|

20%|

10%

AS1221 AS1239 AS1755 AS3257 AS3967 AS6461 Abilene CERNET2

topology

Fig. 13. Protection rate with node protection in real topologies.

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.
Netw. (2011), doi:10.1016/j.comnet.2011.11.006

http://dx.doi.org/10.1016/j.comnet.2011.11.006

M. Xu et al./Computer Networks xxx (2011) Xxxx—xxx 11

LFA —+—
Uturns ----- -
SymFTS & AsymFTS & Tunnels g

2
E
£ 100% s B g B e R
S 98% |- 8
S 96%
£ 949t
(o]
o TYNLA
Z 90% ZaN G
/ N TR
88%]
86%
0 40 80 120 160 200

number of nodes

Fig. 14. Protection rate with link protection in generated topologies.

18% T

16% T,
1450 T 2
S

12%

2
£
=
2
3
S 10%
a,
L
g 8% LFA
;b 6% Uturns e
s f oS Notvia i=-&--
E A% A SymFTS
20 gj/ AsymFTS :&Tunnels 3
(V3
0 40 80 120 160 200

number of nodes
Fig. 15. Protection rate with node protection in generated topologies.

5.3. Protection rate

We evaluate protection ability of the approaches. Here,
we use protection rate instead of failure coverage [26] as
the metric because failure coverage only measures how
many links or nodes can be protected without considering
the usage of these components (i.e., links or nodes). We de-
fine the protection rate of the kth link/node, v,, and average
link/node protection rate 4, as follows:

Dy = 2k ,where v, = Ok (12)
P Wy

where ; denotes the number of shortest paths passing
through the kth link/node, and §, denotes the number of

oo
AP ©

(a) A network that LFA can
protect all single links

/@;ﬁ@
o0 OO0

(b) A network that Notvia
can protect all single links

paths which are not disrupted by the failure of the kth
link/node using protection paths. Note that we consider
protection for two direction traffic when we calculate §y.
A protection path is successful only when the end-to-end
node can communicate in two directions. Since the protec-
tion rate considers bidirectional connectivity for end-to-
end communications, it is more accurate to evaluate the
protection ability than the metric of failure coverage.

Figs. 12 and 13 show the average link and node protec-
tion rates of the approaches in real topologies. For link pro-
tection, SymFTS and AsymFTS achieve average 83% of link
protection rates in the 8 topologies, respectively. The pro-
tection rates are similar to that of Notvia. For node protec-
tion, the average node protection rates are lower than link
protection because node failures may incur isolation of the
networks. However, AsymFTS has better performance than
existing schemes, or at least has similar one to them..

Figs. 14 and 15 show the average link and node protec-
tion rates of the approaches in generated topologies. Since
Notvia always achieves 100% link protection rate in the 2-
connected networks, for simplicity, we do not put the re-
sult in Fig. 14. Link protection rates of LFA and Uturns
are 90.28% and 99.18%, respectively, and Tunnels, SymFTS
and AsymFTS achieve the same protection rate, 98.71%.
The results demonstrate that SymFTS and AsymFTS
achieve high protection ability. For node protection, LFA,
Uturns, Tunnels, Notvia, SymFTS and AsymFTS achieve
8.93%, 11.50%, 11.66%, 12.13%, 10.64%, and 11.66% of node
protection rates, respectively.

6. Discussion

Although different IPFRR approaches achieve different
protection effectiveness with different required overhead,
they can have their own application scenarios. A network
operator can choose and deploy one of the approaches to
trade off between overheads and performance according
to network properties. In general, many network proper-
ties, e.g., network topologies and link weights, may impact
the IPFRR performance. For simplicity, here we only use
small scale network topologies to illustrate the impacts
on protection effectiveness and discuss the application sce-
narios of these approaches. Note that the Uturns approach
introduces much computation complexity but achieves
similar performance to the Tunnels approach, and our pro-
posed FTS improves the Tunnels approach. Thus, we do not
discuss the Tunnels and Uturns approaches.

(¢) A network that FTS can
protect all single links

Fig. 16. Example networks where the numbers beside each line denote link weights.

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

12 M. Xu et al./Computer Networks xxx (2011) xxX—Xxx

Table 2
Application scenarios of different approaches.

Approach Network scale Link weight difference Link density

LFA Any Small High
Notvia Small Any Any
FTS Any Small Any

The LFA approach needs rich network connectivity in
order to provide full protection (which means a 100% pro-
tection rate). Densely connected networks with small link
weight differences can be well protected by LFA [27]. In
particular, a network with uniform link weights can be
fully protected if each link is contained in at least one tri-
angle which includes 3 links. It is not a necessary condition
of full protection. However, such triangles may be still re-
quired in a network to ensure full protection with LFA. For
example, the network in Fig. 16(a) can be fully protected
by LFA. However, if we remove any link whose link weight
is 2, the protection effectiveness of LFA will be weakened.
Normally, LFA can protect large-scale networks, as long
as the link densities are high.

The Notvia approach can provide full protection for net-
works with any link density and any link weight assign-
ment. As shown in Fig. 16(b), Notvia can protect all
single links, but neither LFA nor FTS can achieve it. For
example, FTS cannot protect link I — J. However, the con-
figuration and computation overhead required by Notvia
will increase significantly with the increase in network
scale. Thus, Notvia may be suitable for some small-scale
networks where LFA or FTS cannot achieve full protection.

The FTS approach can also perform well with any link
density like Notvia. However, the overhead introduced by
FTSis much less than Notvia, and thus FTS may be more suit-
able for large-scale networks. If we can properly adjust link
weight assignments, FTS can achieve full protection with the
same network. Fig. 16(c) shows an example of link weight
assignments. In this example, FTS can protect all single links.
We can observe that slight link weight adjustment leads to
100% protection. If a link weight assignment is well de-
signed, e.g., any neighbor link has small link weight differ-
ence, FTS can achieve full protection. Table 2 summarizes
the different application scenarios of LFA, Notvia and FTS.

7. Conclusion

In this paper, we propose a lightweight Fast Tunnel
Selection (FTS) approach to implement tunnel-based
IPFRR. FTS finds effective tunnel endpoints before the com-
plete computation of entire SPTs and thus effectively re-
duces computation overhead. In particular, we present
two FTS algorithms to protect networks with symmetric
and asymmetric link weights, respectively. We simulate
FTS with topologies of different sizes. The results show that
FTS approach effectively reduces the computation over-
head while high protection rates are still guaranteed.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (NSFC) Grant No. 61073166,

61133015 and 61161140454, the National Basic Research
Program of China (973 Program) Grant No.
2009CB320502 and 2012CB315803.

Appendix A. Proof of Lemma 3.2

Proof. Prove by contradiction. Assume that 3R”, s.t.
R" # R AR" € SP(I,R') AR" € SP(R,]), from which we obtain

{ cost(l,R") + cost(R",R') = cost(I,R),
cost(R',R") + cost(R",]) = cost(R,]).

Because R’ € candidates(J), we obtain

{ cost(I,R') < cost(l,]) + cost(J,R'),
cost(R',]) < cost(R',I) + cost(I,]).

Such that

{ cost(l,R") < cost(I,]) + cost(R",]),
cost(R",]) < cost(R",I) + cost(I,])

= R’ € cadidates(J) = R" ¢ subtree(l.]).

We can assume that SP(R”,]) consists of m nodes Ry(=R"),
R1,Rz, ... ,Rm(=]). Obviously R, =] € subtree(l,]), so there is
an integer i s.t. 0<i<mAR;¢subtree(l,])AR;+; € sub-
tree(l,]). Because R; € SP(R",]),

cost(R;,I) + cost(l,]) = cost(Ro,I) + cost(l,]) > cost(Ro,])
> cost(Ry,])

So that

cost(R;,I) + cost(I,]) > cost(R;,J) = cost(R; Riq1) + cost(Ri1,])
= cost(R;,Ri+1) + cost(R.1,1) — cost(L,])
=2 . cost(l,]) > cost(Ri+1,1I) — cost(R;I) + cost(R;,Ri+1)
This indicates that SymFTS will visit node R;,
and Inequation (6) is satisfied. However, SymFTS
does not choose node R; as the tunnel endpoint
at last, so there is a node R s.t.
cost(I,R;) + cost(R;,Ri+q) + cost(l,Ri+q) — cost(l,]) >
cost(I,R’) + cost(R',R) + cost(I,R) — cost(L,])
=
cost(l,R;) + cost(R;,Ri+1) + cost(l,Ri+q) =
cost(I,R’) + cost(R',R) + cost(I,R).
On one hand,
cost(I,R;) + cost(R;,Ri+1) + cost(l,R;+1)
= cost(I,R") + cost(R",R;) + cost(R;,Ri+1) + cost(L,])
+ cost(J,Ri+1)
= cost(I,R") + cost(R",]) + cost(L,]).
On the other hand,
cost(I,R’) + cost(R',R) + cost(I,R)
= cost(,R") + cost(R',R) + cost(J,R) + cost(I,])
>cost(I,R") + cost(J,R") + cost(L,])
= cost(,R") + cost(J,R") + 2 - cost(R,R") + cost(l,])
=
cost(I,R") + cost(R",]) + cost(L,])
>cost(I,R") + cost(J,R") + 2 - cost(R,R") + cost(L,])
=cost(R',R") <0

This is obviously false, so the initial assumption is false.
This ends the proof. O

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://dx.doi.org/10.1016/j.comnet.2011.11.006

M. Xu et al./ Computer Networks xxx (2011) XXx—xXx 13

Appendix B. Proof of Lemma 4.1

Proof. Lemma 4.1 can be proved by contradiction. If R; is
not in candidate(J), then R; is in either Pspace or Qspace, or
neither of them. But R; is in Qspace and R; is downstream of
R; in 1SPT(J), and thus R; is in Qspace and not in Pspace.
Therefore, the nodes in the shortest path between nodes J
and R; are not in Pspace, which means that R; is not in
Pspace. It contradicts to the fact that R; is in Pspace.
Therefore the initial assumption is false and R; is in
candidates(J). O

Appendix C. Proof of Lemma 4.2

Proof. Lemma 4.2 can be proved by contradiction. Assume
that

JR",s.tR' #R AR’ € SP(LR) AR’ € SP(R.])

Therefore cost(R",]) < cost(R',J), which contradicts to the
fact that node R’ is the nearest to node J. O

References

[1] Y. Yang, M. Xu, Q. Li, A lightweight IP Fast ReRoute algorithm with
tunneling, in: Proc. of IEEE ICC, 2010.

[2] P. Francois, C. Filsfils, J. Evans, O. Bonaventure, Achieving subsecond
IGP convergence in large IP networks, ACM SIGCOMM Computer
Communication Review 35 (2005) 33-44.

[3] M. Shand, S. Bryant, IP Fast Reroute Framework (2009).

[4] D. Katz, D. Ward, Bidirectional Forwarding Detection (BFD) for IPv4
and IPv6 (Single Hop), June 2010.

[5] A. Li, P. Francois, X. Yang, On improving the efficiency and
manageability of NotVia, in: Proc. of ACM CoNEXT, 2007.

[6] P.S.G. Enyedi, G. Retvari, A. Csaszar, IP Fast ReRoute: lightweight not-
via without additional addresses, in: Proc. of IEEE Infocom, 2009.

[7] China Education and Research Network 2. <http://
www.cernet2.edu.cn>.

[8] A. Atlas, A. Zinin, Basic Specification for IP Fast Reroute: Loop-Free
Alternates, September 2008.

[9] A. Atlas, U-turn Alternate for IP/LDP Fast-Reroute, February 2006.

[10] S. Bryant, C. Filsfils, S. Previdi, M. Shand, IP Fast Reroute Using
Tunnels, November 2007.

[11] S. Bryant, M. Shand, S. Previdi, IP Fast Reroute Using Notvia
Addresses, July 2009.

[12] S. Rai, B. Mukherjee, O. Deshpande, IP resilience within an
autonomous system: current approaches, challenges, and future
directions, IEEE Communications Magazine 43 (2005) 142-149.

[13] K. Ho, N. Wang, G. Pavlou, C. Botsiaris, Optimizing post-failure
network performance for IP Fast ReRoute using tunnels, in: Proc. of
QShine, 2008.

[14] M. Menth, M. Hartmann, R. Martin, T. Cicic, A. Kvalbein, Loop-free
alternates and not-via addresses: a proper combination for IP Fast
Reroute?, Computer Networks 54 (2010) 1300-1315

[15] D. Hock, M. Hartmann, M. Menth, C. Schwartz, Optimizing unique
shortest paths for resilient routing and Fast Reroute in IP-based
networks, in: Proc. of NOMS, 2010.

[16] S. Kini, S. Ramasubramanian, A. Kvalbein, A. Hansen, Fast recovery
from dual-link or single-node failures in IP networks using
tunneling, IEEE/ACM Transactions on Networking 18 (6) (2010)
1988-1999.

[17] S. Nelakuditi, S. Lee, Y. Yu, Z. Zhang, C. Chuah, Fast local rerouting for
handling transient link failures, IEEE/ACM Transactions on
Networking 15 (2007) 359-372.

[18] S. Ray, R. Guerin, K.-W. Kwong, R. Sofia, Always acyclic distributed
path computation, IEEE/ACM Transactions on Networking 18 (2010)
307-319.

[19] P. Francois, M. Shand, O. Bonaventure, Disruption free topology
reconfiguration in OSPF networks, in: Proc. of IEEE INFOCOM, 2007.

[20] T.CS.G.A. Kvalbein, A.F. Hansen, O. Lysne, Multiple routing
configurations for fast IP network recovery, IEEE/ACM Transactions
on Networking 17 (2009) 473-486.

[21] K-W. Kwong, L. Gao, R. Guerin, Z. Zhang, On the feasibility and
efficacy of protection routing in IP networks, in: Proc. of IEEE
INFOCOM, IEEE Press, Piscataway, NJ, USA, 2010, pp. 1235-1243.

[22] Abilene. <http://abilene.internet2.edu/>.

[23] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, Measuring ISP
topologies with rocketfuel, [EEE/ACM Transactions on Networking
12 (2004) 2-16.

[24] Brite. <http://www.cs.bu.edu/brite/>.

[25] O. Heckmann, M. Piringer, J. Schmitt, R. Steinmetz, Generating
realistic ISP-level network topologies, IEEE Communications Letters
7 (2003) 335-336.

[26] M. Gjoka, V. Ram, X. Yang, Evaluation of IP Fast Reroute proposals,
in: Proc. of [EEE COMSWARE, 2007.

[27] G.E.G. Retvari, J. Tapolcai, A. Csaszar, IP Fast ReRoute: loop free
alternates revisited, in: Proc. of IEEE INFOCOM, 2011, pp. 2948-
2956.

Mingwei Xu received the B.Sc. degree and the
Ph.D. degree from Tsinghua University. He is a
professor in Department of Computer Science
at Tsinghua University. His research interest
includes computer network architecture,
high-speed router architecture and network
security.

Yuan Yang received the Bachelor and the
Master degree of Engineering in 2006 and
2009 respectively, from Tsinghua University,
PR China. He is now a Ph.D. candidate at the
Department of Computer Science & Technol-
ogy in Tsinghua University. His major
research interests include distributed routing
protocol, computer network architecture and
the next-generation Internet.

Qi Li received the B.Sc. degree from Tsinghua
University, and the M.Sc. degree from Chinese
Academy of Sciences, China. He is now a Ph.D.
student in Department of Computer Science at
Tsinghua University. He was a visiting Ph.D.
student at the Chinese University of Hong
Kong between 2009 and 2010. His research
interest includes network architecture and
protocol design, system and network security.

Netw. (2011), doi:10.1016/j.comnet.2011.11.006

Please cite this article in press as: M. Xu et al., Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time, Comput.

http://www.cernet2.edu.cn
http://www.cernet2.edu.cn
http://abilene.internet2.edu/
http://www.cs.bu.edu/brite/
http://dx.doi.org/10.1016/j.comnet.2011.11.006

	Selecting shorter alternate paths for tunnel-based IP Fast ReRoute in linear time
	1 Introduction
	2 Background and related work
	2.1 Traditional Tunnels approach
	2.2 Related works

	3 Fast Tunnel Selection for symmetric link weights
	3.1 Link protection
	3.2 Node protection

	4 Fast Tunnel Selection for asymmetric link weights
	5 Performance evaluation
	5.1 Computation overhead
	5.2 Path stretch
	5.3 Protection rate

	6 Discussion
	7 Conclusion
	Acknowledgments
	Appendix A Proof of Lemma 3.2
	Appendix B Proof of Lemma 4.1
	Appendix C Proof of Lemma 4.2
	References

