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Abstract—With the aid of multipath transport protocols, a
multihomed host can shift some of its traffic from more congested
paths to less congested ones, thus compensating for lost band-
width on some paths by moderately increasing transmission rates
on other ones. However, existing multipath proposals achieve only
coarse-grained load balancing due to a rough estimate of network
congestion using packet losses.

This paper formulates the problem of multipath congestion
control and proposes an approximate iterative algorithm to solve
it. We prove that a fair and efficient traffic shifting implies that
every flow strives to equalize the extent of congestion that it
perceives on all its available paths. We call this result “Congestion
Equality Principle”. By instantiating the approximate iterative
algorithm, we develop weighted Vegas (wVegas), a delay-based
algorithm for multipath congestion control, which uses packet
queuing delay as congestion signals, thus achieving fine-grained
load balancing. Our simulations show that, compared with loss-
based algorithms, wVegas is more sensitive to changes of network
congestion and thus achieves more timely traffic shifting and
quicker convergence. Additionally, as it occupies fewer link
buffers, wVegas rarely causes packet losses and shows better
intra-protocol fairness.

I. INTRODUCTION

With the aid of multipath transport protocols such as Mul-
tipath TCP (MPTCP) [1] and CMT-SCTP [2], a flow can split
its traffic across multiple available paths between multihomed
hosts, into multiple subflows, for improving throughput and
robustness, thus utilizing network resources more efficiently
than traditional TCP. One potential application for multipath
transfer is that a wireless host may transfer data through the
WiFi and the 3G paths in parallel, so as to keep its connections
alive even if one of the network interfaces fails. Lately,
MPTCP is also considered as promising for load balancing
in Data Center Networks (DCNs) [3], where a host usually
has plenty of divergent paths to others.

For multipath transfer, performing congestion control inde-
pendently on each path would do harm to fairness, as shown
by CMT-SCTP [2]. Thus, we believe that a major objective
of multipath congestion control is to couple all the subflows
belonging to a flow together so as to achieve both fairness
and efficiency. By this kind of coupling method, most of
existing multipath proposals [4]–[6] provide the ability of load
balancing that can shift some traffic from more congested
paths to less congested ones, thus compensating for lost band-
width on some paths by moderately increasing transmission
rates on other ones. However, these proposals achieve only
coarse-grained load balancing, because they estimate network

(a) (b)

Fig. 1. The examples of resource pooling [7]

congestion and then trigger traffic shifting using packet losses
that lack of the finer-grained information related to the extent
of congestion. Furthermore, we argue that since packet losses
indicate a quite serious congestion in most cases, traffic should
be shifted as earlier as possible before losses occur, in order
to avoid performance degradation caused by loss recovery.

A fine-grained load balancing should outperform the coarse-
grained in terms of both fairness and efficiency. We use two
examples to illustrate the ideal outcome of load balancing. In
Fig. 1(a), three flows compete for two bottleneck links with
capacities of 6Mbps and 9Mbps, respectively. The most fair
bandwidth sharing requires that S2 shifts some of its traffic
from the lower bandwidth path onto the higher one until it
occupies 1Mbps on the top link and 4Mbps on the bottom.
Another example is about efficiency. In Fig. 1(b), which was
firstly presented in [6], every flow has two paths available for
data transfer. If each flow transmits data at rate 0 ≤ x ≤ 9 on
its one-hop path and at rate (9−x)/2 on its two-hop path, then
bandwidth sharing is always fair. Among these fair outcomes,
the most efficient one is x = 9, because every flow can obtain
the maximum transmission rate.

This paper studies the issue of how a flow determines the
quantity of traffic shifted from one path to others with only
local knowledge on network resources and congestion status.
Our contributions are three-fold. First, we proved that a fair
and efficient traffic shifting implies that every flow strives to
equalize the extent of congestion that it perceives on all its
available paths, namely the “Congestion Equality Principle”.
Second, we formulated the problem of multipath congestion
control and proposed an approximate iterative algorithm to
solve it. Third, by instantiating the approximate iterative
algorithm, we developed weighted Vegas (wVegas), a delay-
based algorithm for multipath congestion control, which uses
packet queuing delay as congestion signals, thus achieving
fine-grained load balancing. wVegas assigns a weight for each
subflow and adaptively adjusts it according to the Congestion
Equality Principle. The weight quantifies the aggressiveness
of competition for bandwidth. Thus, the subflow on less



congested paths can get a larger weight hence competing
more aggressively, which in turn will lead to an increase in
the extent of congestion on the corresponding path, and vice
versa. In theory, this cycle repeats until all the paths used
by each flow in the network become equally congested. At
the equilibrium point, network resources will be fairly and
efficiently shared by all the flows. It is worth emphasizing
that the Congestion Equality Principle and the approximate
iterative algorithm together establish a general framework
for designing an algorithm of multipath congestion control.
wVegas is precisely derived from this framework.

As the name indicates, wVegas is originated from TCP-
Vegas [8] that measures packet queuing delay to estimate
the extent of network congestion and attempts to backlog α
packets 1 in link queues [9]. When many flows are competing
for a bottleneck link, the bandwidth obtained by each flow
is proportional to its occupied buffer size in the link queue.
Thus, it is reasonable for a flow to leverage the parameter
α as a knob to controlling the aggressiveness of competition
for bandwidth. From these observations comes the design
philosophy of wVegas, which can be summarized as follows.
First, on each path, wVegas performs in the same way as TCP-
Vegas. Second, for a flow, the total sum of the parameters α of
subflows is fixed, regardless of the number of subflows. This
property contributes to the intra-protocol fairness of wVegas.
Third, and most significantly, wVegas adaptively adjusts the
parameter α thereby influencing the transmission rate of the
corresponding subflow for the purpose of equalizing the extent
of congestion on the path. We define the normalized α as the
weight of subflows. Thus, in this sense, the weight quantifies
the aggressiveness of competition for bandwidth. The core
of wVegas is the weight adjustment algorithm. Incidentally,
increasing the weight of a subflow may not always push up the
transmission rate, albeit making that subflow more aggressive
to compete for bandwidth, because other flows might also
increase the weight of their own subflows.

Compared with packet loss events, packet queuing delay
provides the fine-grained information related to the extent of
congestion. This helps wVegas achieve more timely traffic
shifting and quicker convergence, hence fine-grained load
balancing, as shown in the simulations. Because of moderate
buffer consumption in link queues, wVegas also rarely causes
packet losses and shows better intra-protocol fairness. wVegas,
on the other hand, inherits the limitations of TCP-Vegas.
Specifically, the effectiveness of wVegas depends upon the
measurement accuracy of Round Tip Times (RTTs). This
requires high-resolution timers [10], especially in the network
like DCNs, where RTTs are roughly on the order of hundreds
of microseconds. Besides, wVegas behaves less aggressively
when competing for bandwidth with loss-based algorithms,
and less efficiently on high bandwidth-delay product paths.
Despite of these limitations, we think wVegas is a good starting

1Actually, TCP-Vegas has two configurable parameters, α and β, for
adjusting the window size during the congestion avoidance period. Since α
and β are commonly very close to each other, we use one of them for the
sake of brevity.

point in the realm of delay-based multipath congestion control.
We will study the above problems in the future.

The remainder of the paper is organized as follows. In Sec-
tion II, we first formulate the problem of multipath congestion
control and then derive the Congestion Equality Principle and
the approximate iterative algorithm. Section III presents the
details of wVegas. The implementation of wVegas is discussed
in Section IV, and its performance is evaluated in Section V.
Finally, we briefly overview related work in Section VI and
conclude the paper in Section VII.

II. PROBLEM FORMULATION AND
APPROXIMATE ITERATIVE ALGORITHM

A. Network Utility Maximization Model

We model a network as the set L of links with the finite
capacities c = (cl, l ∈ L), which are shared by the set S
of flows. A path r ∈ R is defined as the subset Lr ⊆ L.
The relationship between L and R is given by the routing
matrix A, where al,r = 1 if l ∈ Lr, and al,r = 0 otherwise.
Each flow s ∈ S is associated with a subset Rs ⊆ R. This
relationship is given by the matrix B, where bs,r = 1 if r ∈
Rs, and bs,r = 0 otherwise. Let xs,r be the rate of flow s
on path r, and ys =

∑
r∈Rs

xs,r be the total rate of flow
s. Denote the vector (xs,r, s ∈ S, r ∈ Rs) by x, and the
vector (ys, s ∈ S) by y. When flow s transmits data at rate
ys, it obtains an utility Us(ys). Suppose Us(·) is increasing,
strictly concave and twice continuously differentiable in the
nonnegative domain. Define Us(0) = −∞. The objective of
congestion control is to determine appropriate rates for the
flows so as to maximize the total utility subject to link capacity
constraints. Thus, we have

max
x≥0

∑
s∈S

Us(ys)

s.t. y = Bx

Ax ≤ c.

(1)

There exists a unique optimal solution for y since the
objective function is strictly concave and the feasible region
is compact. However, it is not true that the optimal x is also
unique, because the objective function is not strictly concave
for x. Consider the Lagrangian function

L (x, λ) :=
∑
s∈S

Us(ys) +
∑
l∈L

λl

(
cl −

∑
r∈R

al,rxr

)
=
∑
s∈S

Us(ys)−
∑
l∈L

∑
r∈R

λlal,rxr +
∑
l∈L

λlcl

=
∑
s∈S

Us(ys)−
∑
r∈R

qrxr + λcT

=
∑
s∈S

Us(ys)−
∑
s∈S

∑
r∈R

bs,rqrxr + λcT

=
∑
s∈S

Us

(∑
r∈Rs

xs,r

)
−
∑
r∈Rs

qrxs,r + λcT ,



where the multiplier λl ≥ 0 can be interpreted as the price or
the congestion signal associated with link l, and

qr =
∑
l∈L

λlal,r (2)

is the aggregate price of the links constituting path r. Thus
we call qr the path price. Define

Ls(λ) := max
xs,r≥0
r∈Rs

Us

(∑
r∈Rs

xs,r

)
−
∑
r∈Rs

qrxs,r, (3)

D(λ) :=
∑
s∈S

Ls(λ) + λcT . (4)

So the dual problem of (1) is

min
λ≥0

D(λ). (5)

By introducing link prices λ = (λl, l ∈ L), the original
problem (1) is decomposed into a master problem (5) and a
number of sub-problems (3). Each sub-problem corresponds to
a local optimality related to a flow with only local knowledge
qr, r ∈ Rs. This duality structure allows a decentralized
approach to reaching the optimal solution of (1).

The gradient projection algorithm [11] can be used to solve
(5) in an iterative way, just as did [12]. In brief, on the side of
sources, given λ, flow s locally achieves optimality by solving
(3) and then broadcasts the optimal solution x∗

s,r(λ), r ∈ Rs

to links. On the side of links, link l adjusts the price λl in the
opposite direction to the gradient of (4), namely

λl(t+ 1) =

[
λl(t)− γ

(
cl −

∑
r:l∈Lr

x∗
s,r(λ)

)]+
, (6)

and then announces the updated price to flows, where t is
the iteration index, γ > 0 is the search step size, and [·]+
denotes the projection onto the nonnegative orthant. This
cycle repeats and it will ultimately converge to the dual
optimal solution λ∗, hence the primal optimal solution x∗(λ∗),
provided that γ is sufficiently small and Us(·) satisfies some
mild conditions [12]. However, because of the particularity
of multipath congestion control, it is needed to improve the
above iterative process. Before explaining our motivations, we
first present the necessary conditions satisfied by the optimal
solution of (3) as follows.

Proposition 1. Suppose flow s has n > 0 paths and, given
λ ≥ 0, the corresponding path prices are sorted in ascending
order: q1 = · · · = qm < qm+1 ≤ · · · ≤ qn. Then the optimal
solution x∗

s,r(λ) of (3) satisfies

U
′

s

(
m∑
r=1

x∗
s,r(λ)

)
− q1 = 0, (7)

x∗
s,r(λ) = 0, r = m+ 1, · · · , n, (8)

where U
′

s(·) is the derivative of Us(·) .

Proof: See Appendix.

This result shows that a flow tends to always use only the
cheapest paths while giving up other expensive ones so as
to maximize its utility. Note that the path price reflects the
extent of congestion. So the behavior that every flow pours
into the cheap paths will push up the price of those paths, and
meanwhile, will make the price of the previously expensive
paths decline. At the equilibrium point, all the paths used by
a flow will eventually have the same price, or in other words,
will become equally congested, if possible 2. Also note that the
concavity of the utility function guarantees the fairness of the
optimal solution of (1). Therefore, we arrive at the following
conclusion.

Corollary 1 (Congestion Equality Principle). In the model (1),
if every flow strives to equalize the extent of congestion that it
perceives on all its available paths by means of shifting traffic,
then network resources will be fairly and efficiently shared by
all the flows.

Now we return to the issue about why and how to mod-
ify the iterative process. The motivation comes from two
observations on Prop. 1. First, at each step of the iterative
process, every flow turns off all its paths except for the
least congested ones. This behavior is too drastic and also
impractical in real networks, because congestion signals are
commonly measured by sources only with the aid of traffic
in most protocol implementations. Thus, unless restarting the
closed paths, a flow has no way to perceive any subsequent
congestion signals on those paths even if those paths become
under-utilized. Second, a flow can not determine a unique
solution of (3) at receiving the same price on multiple paths.
It is not quite reasonable to randomly choose one from all
the optimal candidates. Therefore, we need to develop an
algorithm for smoothly adjusting transmission rates on the side
of sources.

B. An Approximate Iterative Algorithm

Our basic idea is that at each iteration step, the flow
calculates an approximate solution xs,r(λ) of (3), instead of
the optimal solution x∗

s,r(λ), by means of advancing a distance
in direction to the gradient of

Gs(x) := Us

(∑
r∈Rs

xs,r

)
−
∑
r∈Rs

qrxs,r (9)

with taking the current transmission rates as the starting points,
and then broadcasts the new rates to links. The approximate
solution does not destroy convergence of the iterative process
because the evolution of rates follows the Congestion Equality
Principle. That is to say, the rates of a flow tend to decline
on more congested paths (expensive paths) while tending to
increase on less congested ones (cheap paths). As t goes to
infinity, the dual optimal solution λ∗ and the primal optimal
solution x∗(λ∗) will both be reached.

2Theoretically, a flow will ultimately give up the path whose price is always
higher than that of its other paths. In practice, it is more reasonable to put a
little bit of traffic on those expensive paths since they might become cheap
in the future. See Section IV for more details.



Specifically, since
∂

∂xs,r
Gs(x) = U

′

s(ys)− qr, (10)

flow s uses

xs,r(t+ 1) =
[
xs,r(t) + θ

(
U

′

s (ys)− qr

)]+
, r ∈ Rs, (11)

to update its rates at each iteration step, and then broadcasts
the new rates to links, where θ > 0 is the positive step size.
Accordingly, on the side of links, x∗

s,r(λ) in (6) should be
replaced by xs,r(λ), namely

λl(t+ 1) =

[
λl(t)− γ

(
cl −

∑
r:l∈Lr

xs,r(λ)

)]+
. (12)

Equations (11) and (12) together constitute the approximate
iterative algorithm for solving the problem (5).

Next, we would like to emphasize the physical significance
of (11). Specifically, U

′

s(ys) can be interpreted as the expected
path price as though flow s transmitted data at rate ys along
a single path. If the current price of path r is higher than
U

′

s(ys), the rate will decrease; otherwise, it will increase. As a
consequence, traffic always moves from more congested paths
to less congested ones and thus the extent of congestion on
each path used by a flow tends to be equal.

The Congestion Equality Principle and the approximate
iterative algorithm together establish a general framework for
designing an algorithm of multipath congestion control. In the
next section, we will use packet queuing delay to estimate the
extent of congestion and develop a practical congestion control
algorithm by instantiating (11).

III. WEIGHTED VEGAS

In this section, we provide a delay-based congestion con-
trol algorithm for MPTCP, named weighted Vegas (wVegas),
which is originated from TCP-Vegas [8].

A. The Weight Adjustment Algorithm of wVegas
On each path, wVegas works in the same way as TCP-Vegas.

Briefly speaking, wVegas calculates

diff =

(
cwnd

baseRTT
− cwnd

rtt

)
· baseRTT (13)

on the end of every round during the phase of congestion
avoidance, where cwnd is the congestion window, rtt is the
average RTT in the last round and baseRTT is the minimal
RTT that has been measured so far. If diff > α, cwnd is
increased by one packet. If diff < α, cwnd is decreased by
one packet. We presume TCP-Vegas is well-known and thus
pay special attention to how to define the weight of subflows
and how to adjust weights for shifting traffic. We first derive
the utility function of wVegas, and then define the weight of
subflows, and finally propose the weight adjustment algorithm.

We know that diff converges to α at the equilibrium point
[13]. Thus, by substituting qr = rtt − baseRTT and xs,r =
cwnd/rtt into (13) and replacing diff by αs,r, we have

xs,r =
αs,r

qr
, r ∈ Rs, (14)

Algorithm 1: The weight adjustment algorithm
1: Initialization at t = 0:
2: Flow s sets the initial transmission rates to its subflows;
3: for r ∈ Rs do

4: ks,r(t)←− xs,r(t)

/ ∑
i∈Rs

xs,i(t);

5: Flow s broadcasts the transmission rates of subflows to links;

6: At time t = 1, 2, · · · :
7: Flow s receives prices from paths;
8: for r ∈ Rs do
9: αs,r(t)←− ks,r(t− 1)αs;

10: if qr ̸= 0 then
11: xs,r(t)←− αs,r(t)/qr ;

12: else
13: xs,r(t)←− xs,r(t− 1) + 1;

14: ks,r(t)←− xs,r(t)

/ ∑
i∈Rs

xs,i(t);

15: Flow s broadcasts the transmission rates of subflows to links;

where αs,r can be interpreted as the number of packets that
flow s expects to backlog in link queues of path r. By Prop.
1, since all the working paths of flow s have the same price,
denoted as qs, we have

ys =
∑
r∈Rs

αs,r

qr
=

1

qs

∑
r∈Rs

αs,r =
αs

qs
, (15)

where αs is the total number of packets backlogged in the
network for flow s. Then from (7), (8) and (15), the utility
function of wVegas can be solved as follows:

U
′
(ys) = qs =

αs

ys
,

U(ys) = αs log ys. (16)

Clearly, the function (16) is increasing, twice continuously
differentiable and strictly concave for ys. Consider

θ =
xs,r(t)

qr
. (17)

Substituting (17) into (11) yields

xs,r(t+ 1) =
U

′

s(ys)

qr
xs,r(t), r ∈ Rs. (18)

Recall that U
′

s(ys) can be interpreted as the expected path
price. So (18) follows the Congestion Equality Principle.
Substituting (16) into (18), we have

xs,r(t+ 1) =
xs,r(t)

ys
· αs

qr
=

ks,r(t)αs

qr
, r ∈ Rs, (19)

where
ks,r(t) =

xs,r(t)

ys
(20)

is defined as the weight of flow s on path r. Considering the
case where qr = 0, we further define

xs,r(t+ 1) = xs,r(t) + 1, r ∈ Rs (21)

as the supplementary rule for updating rates when qr = 0.



The weight adjustment algorithm of wVegas is given by
Algo. 1. Note that the initial weights do not matter much to
convergence, though they could have effect on the position of
the equilibrium point in the case where the optimal solution is
not unique. The pseudo-code of wVegas will be given in the
next section.

B. Discussion

1) The Nature of wVegas: Equations (19) and (20) reveal
the nature of wVegas. Specifically, flow s adjusts its rate on
path r by means of tweaking the parameter αs,r = ks,r(t)αs,
namely the number of packets that flow s expects to backlog
in link queues of path r. For flow s, the total number of the
expected backlogged packets is fixed at αs, a preconfigured
parameter of wVegas. αs is allocated to all the subflows
of flow s. The share on path r is indicated by the weight
ks,r(t) that is further determined by the proportion for which
the current equilibrium rate xs,r(t) accounts of the current
total equilibrium rate ys. We know that when many flows are
competing for a bottleneck link, the bandwidth obtained by
each flow is proportional to its occupied buffer size in the
link queue. Since αs is a constant and αs,r = ks,r(t)αs, the
weight ks,r(t) can be regarded as the normalized αs,r and thus
quantifies the aggressiveness of competition for bandwidth.
According to the definition of weights (20), the subflow that
can transmit data at a higher equilibrium rate will obtain a
larger weight. Thus, traffic is shifted from more congested
paths to less congested ones.

2) The Domino Effect: One of the key ideas of multipath
congestion control is to couple the rate adjustment process
on each subflow together by means of a specially designed
algorithm so as to achieve traffic shifting. Thus, the lost band-
width on a path due to congestion events can be compensated
by increasing rates of other subflows. As a result, a congestion
event occurring in one place might cause flows in other places
to change rates. This phenomenon is somewhat similar to the
domino effect. We provide such an example in Section V.

3) Measurement Accuracy of baseRTT : The measurement
accuracy of the minimal packet propagation delay, also called
baseRTT , has much effect on the effectiveness of wVegas,
because the measurement error on baseRTT might lead to the
evolution of weights deviating from the correct direction hence
arriving at an undesirable equilibrium state. Leith et al. [14]
proposed an effective method to improve the measurement
accuracy of baseRTT . We incorporate their method into
wVegas with some minor modifications. Please see Section
IV for more details.

C. Another Perspective on wVegas

Essentially, multipath congestion control can be regarded as
a kind of traffic engineering at end systems. As an economical
user, the multihomed host prefers to use the cheapest (least
congested) paths, if it has multiple options available, so as to
maximize its utility. The behavior of traffic shifting follows the
Congestion Equality Principle. For wVegas, the weight is the
knob to shifting traffic among subflows. If we view the weight

Algorithm 2: The iterative algorithm for solving WAP
Input: Initial weights that satisfy ks,r > 0 and

∑
r∈Rs

ks,r = 1.
Output: The weights that can solve WAP.

1: repeat
2: Solve the problem (22) so as to obtain the optimal rates;
3: Use (24) to update the weights;
4: until The changes to weights are less than the predetermined

threshold;

as some kind of resources whose total number is a unit for
each flow, then, in the context of wVegas, the network utility
maximization model (1) can be transformed into the weight
allocation model as follows.

Definition 1 (Weight Allocation Problem (WAP)). Given a
network topology and the flows, find a weight allocation
scheme for the problem

max
x≥0

∑
s∈S

∑
r∈Rs

ks,r log xs,r

s.t. Ax ≤ c,
(22)

such that all the paths used by each flow have the same price,
or, in other words, become equally congested.

Recall that U
′

s(ys) can be interpreted as the expected path
price for flow s and qr is the current price on path r. It is
reasonable to use

ks,r(t+ 1) =
U

′

s(ys)

qr
ks,r(t), r ∈ Rs (23)

to iteratively search the desired weight allocation scheme. The
algorithm is given by Algo. 2.

Since each flow has a unit of weights for allocation, we set
αs to be one. Substituting (16) into (23) yields

ks,r(t+ 1) =
1

ys
· ks,r(t)

qr
=

xs,r(t)

ys
, r ∈ Rs, (24)

which has the same form with the definition of weights (20)
except for the iteration index.

IV. IMPLEMENTATION

This section primarily focuses on the implementation of
the weight adjustment algorithm since the implementation of
TCP-Vegas is well known. Because of multiple available paths,
wVegas uses the arrays indexed by the identifier of subflows
to record state variables. The pseudo-code is given by Algo.
3.

First of all, wVegas uses the average RTT measured in the
last round (line 8 in Algo. 3), instead of the smoothed RTT,
as the current RTT on path r in order to quickly respond to
changes of network congestion. The array equilibrium rates
records the saturated rates of subflows, which are prepared
for calculating weights (line 27–31). Note that if a subflow is
experiencing packet losses, then its equilibrium rate variable
is reset to zero (line 33) so as to have no effect on the weight
of other subflows. For each subflow, equilibrium rates is
updated only when diff is no less than alpha (line 10, 11).
The reasons are two-fold. Firstly, this condition guarantees the



equilibrium rate is not under-estimated. The over-estimation is
acceptable since the instantaneous rate is decreasing and will
ultimately reach the equilibrium point. Secondly, compared
with the condition that diff must be equal to alpha, the
“no-less-than” condition makes wVegas more quickly tweak
weights hence accelerating convergence.

To improve the accuracy of baseRTT , we incorporate the
method in [14] into wVegas (line 23, 24). The idea is to make
cwnd back off once detecting the queuing delay is larger
than some threshold, so that the bottleneck link can drain
off the backlogged packets. And thus all the flows involved
have a chance to obtain the more accurate propagation delay.
Instead of configuring a constant threshold [14], [15], wVegas
adopts an adaptive method to determine when to back off.
Specifically, the array queue delays records the minimal
queuing delay (line 19–21, 25, 34) measured after the last
backoff. When the current queuing delay is several times larger
than queue delays (line 22), cwnd is decreased by a factor.

It is possible that the weight of some paths tends to zero.
Given that those paths might be idle in the future, wVegas sets
a lower bound for the parameter alpha (line 14). However, this
is an open issue.

Note that all the constants in Algo. 3 are configurable. For
example, we set the parameter total alpha, namely αs, to
be 10 packets (line 2) and the initial value of alpha to be 2
packets (line 4). Our simulations show that these settings work
well. Besides, Algo. 3 do not involve the slow-start phase as
well as any process of error handling, since these are the same
as TCP-Vegas.

V. EVALUATION

We implemented MPTCP and the two congestion control
algorithms 3, wVegas and Linked Increases [6], in NS-3 [16].
We mainly focused on the fairness and efficiency of traffic
shifting. The common simulation parameters are given in Table
I, unless otherwise indicated. Note that the sending/receiving
buffer size is set to be sufficiently large for each subflow so that
the transmission rate is limited only by the congestion control
window. We configured the type of link queues to be DropTail.
The delay acknowledgement mechanism was also disabled.
For brevity and clarity, in this section, we omit the unit of
bandwidth, namely bps, and identify flows by the number
of corresponding sources. Moreover, subflows are numbered,
starting at 1, in sequence from left to right or from top to
bottom.

The computational overhead of wVegas is inexpensive,
though it involves floating-point division. This is because the
frequency of weight adjustment is one time per RTT for each
subflow and the number of paths used by a flow is also small
in most cases. Additionally, there exist many approximation
methods that can convert floating-point calculation to integer
operations. So we believe the overhead of wVegas is negligible
in the condition of modern hardware technology.

3Since the performance of CMT/RPv2 [5] is comparable to Linked Increas-
es, we implemented only one of them.

Algorithm 3: The pseudo-code of wVegas
1: Initialization:
2: total alpha← 10 ; // namely αs

3: for r ∈ Rs do
4: alpha[r]← 2;
5: equilibrium rates[r]← 0;
6: queue delays[r]← 0;

7: On the end of round for subflow r:
/* average RTT estimated in the last round

*/
8: rtt← sampled rtts[r]/sampled num[r];
9: diff ← cwnd[r]× (rtt− baseRTT [r])/rtt;

/* tweak weights and alphas */
10: if diff ≥ alpha[r] then
11: equilibrium rates[r]← cwnd[r]/rtt;
12: Adjust Weights();
13: alpha[r]← weights[r]× total alpha;
14: alpha[r]← max{2, alpha[r]} ; // lower bound

/* window adjustment */
15: if diff < alpha[r] then
16: cwnd[r]← cwnd[r] + 1;

17: else if diff > alpha[r] then
18: cwnd[r]← cwnd[r]− 1;

/* try to drain link queues if needed */
19: q ← rtt− baseRTT [r] ; // current queuing delay
20: if queue delays[r] = 0 or queue delays[r] > q then
21: queue delays[r]← q;

22: if q ≥ 2× queue delays[r] then
23: backoff factor ← 0.5× baseRTT [r]/rtt;
24: cwnd[r]← cwnd[r]× backoff factor;
25: queue delays[r]← 0;

26: cwnd[r]← max{2, cwnd[r]}; // lower bound

27: Adjust Weights():
28: total rate←

∑
equilibrium rates;

29: for r ∈ Rs do
30: if equilibrium rates[r] ̸= 0 then
31: weights[r]← equilibrium rates[r]/total rate;

32: On packet loss for subflow r:
33: equilibrium rates[r]← 0;
34: queue delays[r]← 0;

TABLE I
COMMON SIMULATION PARAMETERS

Sending Buffer 3200pkts Packet Size 1000B
Receiving Buffer 6400pkts RTT 100ms

Link Queue 50pkts total alpha 10pkts

A. Validation on Algo. 2

By solving the problem (1) with automatic tools such as
MATLAB, we easily know the optimal solution in Fig. 2(a)
is that S2 gets 1.8972M on the top path and 1.2056M on
the bottom while S1, S3 and S4 get 3.1028M, 8.7944M
and 4.7944M, respectively. Algo. 2 can also output the same
solution in an iterative way. As shown by Fig. 3(a), all the
rates of subflows are quite close to the corresponding optimal
values after about 20 steps and the path prices of S2 tend
to be equal. Note that initial weights are insignificant for
convergence. We deliberately set the initial weight of Flow
2-1 to be much less than that of Flow 2-2 for the purpose of
demonstrating the effectiveness of wVegas. For comparison,
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Fig. 3. The simulation in the topology of Fig. 2(a)
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Fig. 5. Traffic shifting in the topology of Fig. 1(a)

Fig. 3(b) and (c) show the simulation results of NS-3. The
instantaneous rates are estimated by dividing the congestion
control window by the average RTT measured in a round.
Clearly, the rates of wVegas are more stable and closer to the
optimal values. For Linked Increases, the rates of Flow 2-1
and Flow 2-2 are much less than their fair shares. This is
because link buffers are occupied by few flows in the case of
low statistical multiplexing, resulting in synchronization. This
phenomenon means Linked Increases might require routers to
run appropriate Active Queue Management algorithms so as
to achieve the desirable performance. Incidentally, the spikes
appearing in Fig. 3(c) are caused by packet losses due to the
depletion of link buffers.

Fig. 4 shows the iterative outcome in the topology of Fig.
1(b). The initial weights are randomly generated. As expected,
wVegas can achieve the most efficient bandwidth sharing.
Because the one-hop path always has a smaller queuing delay
than that of the two-hop path, each flow would like to use the
former while giving up another one.

B. Traffic Shifting

We use the topology in Fig. 1(a) to evaluate the effectiveness
of wVegas in terms of traffic shifting. Specifically, Flow 1,
Flow 2 and Flow 3 are started at 0s simultaneously. Then
Flow 4 comes up on the top path at 100s, which will force
Flow 2-1 to decrease its rate. As compensation, Flow 2-2 will
increase the rate. Next, Flow 4 stops at 200s, and meanwhile,

Flow 5 4 begins to run on the bottom path. So Flow 2 has to
adjust its rates again. Finally, Flow 5 quits at 300s and all the
other flows stop at 360s.

As showed in Fig. 5, wVegas can quickly complete traffic
shifting, since it is more sensitive to changes of network
congestion than Linked Increases. The different values of αs

produce the similar results. A larger αs means more packets
will be backlogged in link queues, thus leading to a larger
RTT. On the other hand, a quite small αs may cause inaccurate
congestion detection and adversely affect performance of data
transfer. We think αs = 10 is a good choice and use it as the
default setting in our simulations.

TABLE II
AVG. INS. RATES OF FLOW 2 IN FIG. 1(A)

Interval 0–100s 100–200s 200–300s 300–360s
Optimal 1.00, 4.00 0.00, 4.50 2.25, 1.50 1.00, 4.00
wVegas 1.08, 3.53 0.15, 4.19 1.93, 1.62 0.97, 3.64
Linked 2.59, 1.89 1.65, 2.69 0.67, 3.83 0.45, 2.01

For convenience of comparison, we list in Table II the
average instantaneous rates and the corresponding optimal
rates of Flow 2 during each interval. Each item in the table
consists of two floating-point numbers separated by a comma,
which are the rates of Flow 2-1 and Flow 2-2, respectively.

4Flow 4 and Flow 5 are not painted in Fig. 1(a).



(a) wVegas (b) Linked Increases

Fig. 6. Fairness on bottleneck links in the topology of Fig. 2(b)
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Note that, for wVegas, the rate of Flow 2-1 decreases to a
quite low level (about 0.15) from 100s to 200s, rather than
to zero. This is because wVegas sets a lower bound to the
parameter alpha (see line 14 in Algo. 3). Compared with
Linked Increases, the rates of wVegas are closer to the optimal
values.

wVegas attempts to backlog fewer packets in link queues,
thus stabilizing links into a fully-utilized state with fewer
losses. This property facilitates wVegas to cope with the
variation of RTTs. To test this, we repeated the simulation
in Fig. 1(a) with the RTT of Flow 2-2 being various values.
The result is shown in Fig. 7. Clearly, the variation of RTTs
has little effect on wVegas.

C. Fairness on Bottleneck Links

For multipath transfer, a natural concern is that if several
subflows belonging to a flow pass through the same bottleneck
link, then whether this flow would steal bandwidth from others.
We use the network topology similar to Fig. 2(b) to validate the
intra-protocol fairness of wVegas. Specifically, there are four
flows numbered from 1 to 4, competing for one bottleneck
link with capacity of 20M. Flow 1 has three subflows and
Flow 2 has two subflows, while Flow 3 and Flow 4 are
both single-path flows. For the convenience of comparison,
we show in Fig. 6 the average instantaneous rates of the two
algorithms during each interval of 50s. For wVegas, Flow
1-1 and Flow 3 evenly share link capacity from 0s to 50s.
Then, from 50s to 100s, the rate of Flow 3 keeps roughly
unchanged, though Flow 1-2 adds to Flow 1. Next, from 100s
to 150s, due to the existence of Flow 4, every flow relinquishes
a part of bandwidth to the newcomer, and consequently the
link capacity is still fairly shared. From 150s to 200s, though
Flow 1 initiates the third subflow (Flow 1-3), it can not steal
bandwidth from Flow 3 and Flow 4. Next, Flow 2 is started
with two subflows at 200s, so each flow obtains roughly 5M
bandwidth. Finally, after Flow 3 and Flow 4 quit at 250s, the
link capacity is fairly shared by Flow 1 and Flow 2.

In contrast, Fig. 6(b) shows that the performance of Linked
Increases is instable with respect to fairness. This is because
the previously initiated flows usually occupy more link buffers

than the subsequently started flows and thus obtains more
bandwidth. Moreover, every flow does not voluntarily decrease
transmission rates to meet demands of others unless packet
losses occur. As a result, link capacity is hard to be fairly
shared by every one.

D. The Domino Effect

Due to the rate complementation between subflows, a con-
gestion event occurring in one place may cause flows in other
places to change transmission rates. We construct a slightly
complicated scenario to demonstrate this effect. In Fig. 2(c),
if link L3 becomes increasingly congested or even fails, then
not only S2 and S3 will decrease their transmission rates, but
also S1, S4 and S5 will respond to the congestion events.

Specifically, there are five flows numbered from 1 to 5
starting one by one with a time interval of 50s. Then, after
250s, we continue to add background flows to link L3 in
order to generate congestion events. Finally, a failure occurs
on L3 at 600s. The details of start/stop times of each flow
are shown in Fig. 8(f), while the simulation results are given
in other five subfigures. The flows numbered from 6 to 9 are
background flows passing through L3. We plot the average
instantaneous rates of each flow during each interval of 50s
from 200s to 650s. The optimal values are obtained by solving
the problem (1). As expected, Flow 2-2 and Flow 3-1 continue
to decrease their rates with L3 becoming more and more
congested from 200s to 450s. As compensation, Flow 2-1 and
Flow 3-2 gradually increase their rates. These actions then
further force the rates of Flow 1-2 and Flow 4-1 to decline.
By this kind of interaction between subflows, the influence
of a congestion event is spread from its occurring position to
other places in the network. After 450s, the background flows
quit one by one, so the rates of each flow gradually recover
to the values prior to 250s.

We can obtain three interesting observations from Fig. 8.
First, the curves of wVegas are more consistent with the
optimal ones than those of Linked Increases. Second, for a
flow, if the curve of one subflow is concave, then another is
convex, and vice versa. As mentioned before, this phenomenon
is produced due to the property of rate complementation
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Fig. 8. The domino effect

between subflows. Third, the curves of Flow 4-2 and Flow
5-1 have a relatively flat slope. The reasons are two-fold. On
one hand, link L5 is far away from L3, so it is less influenced
by congestion events. On the other hand, the capacity of L5
is quite small thereby playing a minor role in bandwidth
reallocation process.

VI. RELATED WORK

Many protocols were proposed in an attempt to transfer data
through multiple paths in parallel. pTCP [17], [18] allows a
connection to utilize the aggregate bandwidth offered by mul-
tiple paths, and it assumes the wireless link is the bottleneck
to ensure fairness. The work in [19] improves the fairness
of parallel TCP in under-utilized networks by using a long
virtual round trip time. mTCP [20] focuses on detecting shared
congestion at bottleneck links by computing the correlation
between fast retransmit intervals on different paths. cTCP
[21] provides a single congestion window for all the paths
and maintains a database at senders to record the relationship
between packet sequences and the paths for the purpose of
detecting losses. cTCP uses loss probability to estimate path
capacity so as to put more packets on high bandwidth paths.
CMT-SCTP [2] improves SCTP for the purpose of multipath
transfer in parallel.

However, most of the above schemes perform uncoupled
congestion control, similar to TCP-Reno, on each path, thus
neither of them can achieve flexible load balancing. As
one of the next generation transport protocols, MPTCP [1]
incorporates many lessons learned from previous research
efforts and development practice. MPTCP adopts a novel

coupled congestion control algorithm, named Linked Increases
[6], [22]. Briefly speaking, this algorithm increases the total
congestion window by one packet only when the outstanding
packets issued on every path are all acknowledged. The
incremental share of the congestion window on each subflow is
proportional to its current congestion window size. CMT/RPv1
[4] and CMT/RPv2 [5] also adopt the similar way.

In theoretical efforts on multipath congestion control, Kelly
et al. [23] presented a sufficient condition for the local stability
of end-to-end algorithms. Han et al. [24] proposed a class
of algorithms derived from differential equation models, and
also proved their stability. Wang et al. [25] developed two
distributed algorithms to maximize the aggregate source utility.

VII. CONCLUSIONS AND FUTURE WORK

Based upon the network utility maximization model, we
proved the Congestion Equality Principle, and proposed an
approximate iterative algorithm for solving the problem of
multipath congestion control. These two components together
establish a general framework for designing an algorithm
of multipath congestion control. Using this framework, we
developed wVegas and evaluated its performance in terms of
fairness and efficiency.

Just as TCP-Vegas and TCP-Reno, wVegas and Linked In-
creases have their own respective advantages and defects. Thus
they can complement each other in practice. Furthermore, we
expect to combine the two algorithms together so as to cope
with multiple long high-speed paths efficiently. In this regard,
Compound TCP [26] provides a very good instance. In future
work, we plan to investigate this issue. Besides, whether or



not to shut down seriously congested paths is also an open
issue.
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APPENDIX
PROOF OF PROP. 1

Proof: According to Karush-Kuhn-Tucker Conditions, the
optimal solution of (3) should simultaneously satisfies

∂Gs(x)

∂xs,i
= U

′

s

(
n∑

r=1

xs,r

)
− qi ≤ 0, (25)

xs,i ≥ 0, (26)
∂Gs(x)

∂xs,i
xs,i = 0, (27)

where Gs(x) is given by (9) and i = 1, 2, · · · , n.
Case 1: Suppose q1 = · · · = qn. Because Us(0) = −∞,

there exists at least one subflow, denoted as j, whose rate
is positive. Thus, from (27), we have ∂Gs(x)/∂xs,j = 0 and
hence U

′

s (
∑n

r=1 xs,r)−qj = 0. Since every path has the same
price, Equation (7) holds.

Case 2: Suppose n > 1 and q1 = · · · = qm < qm+1 ≤
· · · ≤ qn. If there is a subflow j such that j > m and
xs,j ̸= 0, then from (27) we have U

′

s (
∑n

r=1 xs,r) − qj = 0
which together with (25) yields U

′

s (
∑n

r=1 xs,r) = qj > q1 ≥
U

′

s (
∑n

r=1 xs,r). The contradiction occurs. Therefore, xs,j = 0
where j > m, so Equation (8) holds. According to Case 1,
we know that Equation (7) also holds.


