
Energy-aware Routing in Data Center Network
Yunfei Shang, Dan Li, Mingwei Xu

Department of Computer Science and Technology
Tsinghua University Beijing China,

{shangyunfei, lidan, xmw}@csnet1.cs.tsinghua.edu.cn

ABSTRACT
The goal of data center network is to interconnect the

massive number of data center servers, and provide
efficient and fault-tolerant routing service to upper-layer
applications. To overcome the problem of tree architecture
in current practice, many new network architectures are
proposed, represented by Fat-Tree, BCube, and etc. A
consistent theme in these new architectures is that a large
number of network devices are used to achieve 1:1
oversubscription ratio. However, at most time, data center
traffic is far below the peak value. The idle network
devices will waste significant amount of energy, which is
now a headache for many data center owners.

In this paper, we discuss how to save energy
consumption in high-density data center networks in a
routing perspective. We call this kind of routing energy-
aware routing. The key idea is to use as few network
devices to provide the routing service as possible, with
no/little sacrifice on the network performance. Meanwhile,
the idle network devices can be shutdown or put into sleep
mode for energy saving. We establish the model of energy-
aware routing in data center network, and design a heuristic
algorithm to achieve the idea. Our simulation in typical
data center networks shows that energy-aware routing can
effectively save power consumed by network devices.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
topology; C.2.2 [Network Protocols]: Routing protocols

General Terms
Algorithms, Design

Keywords
Energy-aware Routing, Data Center Network, Bcube, Fat-
Tree

1. INTRODUCTION
Today’s data centers, containing tens of thousands of

switches and servers, run data-intensive applications from

cloud services such as search, web email, to infrastructural
computations such as GFS [1], CloudStore [2], and
MapReduce [3]. The goal of data center network (DCN) is
to interconnect the massive number of data center servers,
and provide efficient and fault-tolerant routing service to
upper-layer applications. It is well known that the current
practice of tree architecture in data centers suffers from the
problems of low scalability, high cost as well as single
point of failure. Hence, recently many advanced network
architectures are proposed to replace the tree topology,
represented by Fat-Tree [4], BCube [5] and etc.

A common characteristic of these new data center
architectures is that they expose much richer link
connectivity, and enjoy a 1:1 oversubscription ratio.
However, the high network capacity is especially
provisioned for worst-case or busy-hour load, such as all-
to-all communicating pattern. At most time, data center
traffic is far below the peak value. Specifically, traffic in
data center network varies greatly between daytime and
night. A clear diurnal pattern emerges: traffic peaks during
the day and falls at night. Therefore, a great number of
network devices work in idle state in these richly-connected
data center networks.

At the same time, the energy consumed by power-hungry
devices now becomes a headache for many data center
owners. According to figures, the total energy consumption
of network devices in data centers of the US in 2006 was 3
billion kWh [8]. It has been shown that network devices
consume 20% ~ 30% energy in the whole data center [7],
and the ratio will grow with the rapid development of
power-efficient hardware and energy-aware scheduling
algorithm on the server side [25]. Ideally, any idle switch
would consume no power, and energy consumption would
grow with increasing network load. Unfortunately, today’s
network devices are not energy proportional. The fixed
overheads such as fans, switching fabric, and line-cards
waste energy at low network load. The energy consumption
of network devices at low network load still accounts for
more than 90% [7] of that at busy-hour load. So the large
number of idle network devices in high-density networks
waste significant amount of energy.

In this paper, we discuss how to save energy
consumption in richly-connected data center networks in a
routing perspective. We call this kind of routing energy-
aware routing. The key idea is to use as few network
devices to provide the routing service as possible, with
no/little sacrifice on the network performance. Meanwhile,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Green Networking 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0196-1/10/08...$10.00.

1

the idle network devices can be shutdown or put into sleep
mode for energy saving.

We formally establish the model of energy-aware routing
problem, and prove that it is NP-Hard. Then we propose a
heuristic routing algorithm to achieve our design goal. The
algorithm works in the following way. First, we compute
the network throughput, which is the most important
performance metric for data-intensive computations,
according to the routing on all data center switches. The
corresponding routing is called basic routing. Second, we
gradually remove switches from the basic routing, until
when the network throughput decreases to a predefined
performance threshold. Third, switches not involved in the
final routing are powered off or put into sleep mode.

We conduct extensive simulations in typical data center
networks to validate the effectiveness of our energy-aware
routing algorithm. The results show that our energy-aware
routing algorithm is a feasible and efficient method for
saving energy consumed by network devices in data center
network, especially under low network loads.

The rest of the paper is organized as follows. Section 2
formally establishes the model of energy-aware routing in
DCN, and proves that it is an NP-hard problem. Section 3
presents a heuristic routing algorithm to achieve energy-
aware routing in DCN. Section 4 evaluates our algorithm
by simulations in typical data center networks. Section 5
discusses related work and Section 6 concludes the paper.

2. ENERGY-AWARE ROUTING MODEL
In this section, we first formally establish the model of

energy-aware routing problem. Then, we prove that it is an
NP-Hard problem by reducing from 0-1 Knapsack problem
into the energy-aware routing problem.

2.1 Model Description
The object of energy-aware routing is to compute the

routing for a given traffic matrix, so that as few switches
are involved as possible to meet a predefined performance
threshold. Throughout this paper we use network
throughput as the performance metric, since it is the most
important metric for data-intensive computations. We can
modelize the energy-aware routing problem as ERP-1.

ERP-1: Assume there is a tuple of input parameters, (G,
T, K). G denotes the topology of data center network,
containing all servers and switches, and the connection
relationships and network capacity among them. T denotes
the traffic matrix upon all servers, in which 1 indicates
there is a flow between two servers, while 0 means no such
flow. K denotes the predefined threshold of network
throughput. The object of energy-aware routing is to find a
routing R1 for T, which subjects to the following two
conditions:

ሺܴ1ሻܮ ൌ Min ܮሺܴሻ, ܴ א ܴା (1)
ሺܴ1ሻܯ ൒ (2) ܭ

where ܴା is the space of all possible routings for T, L(R1)
denotes the number of switches involved in R1, and M(R1)
is the network throughput of T under R1.

2.2 NP Hardness
To prove the NP-hardness of the energy-aware routing

problem, we translate ERP-1 into an equivalent problem:
ERP-2.

ERP-2: Given there is a tuple of input parameters of (G,
T, K, N), G, T, K denote topology, traffic matrix and
predefined threshold respectively, which are the same as
ERP-1. N is a threshold number. The object of ERP2 is to
find a routing R2, satisfying the two conditions as follows:

ሺܴ2ሻܮ ൑ ܰ (3)
ሺܴ2ሻܯ ൒ (4) ܭ

where the functions of L(.) and M(.) are the same as those
in ERP-1.

The translation from ERP-1 to ERP-2 is shown in the
following pseudocode.

ERP-1(G, T, K)

begin

set N := the number of all switches in the network;

While (the solution of ERP-2(G, T, K, N) exists)

begin

set result := ERP-2 (G, T, K, N);
set N := N-1;

end

return result;

end
Figure 1: Translation from ERP1 to ERP2

From above it is clear that the solution of ERP-1 can be

got by solving ERP-2 repeatedly, for at most N steps.
Therefore, the hardness of ERP-1 is not harder than ERP2,
i.e. ERP-1 ൑௣ ERP-2. On the other hand, obviously, ERP-
2 ൑௣ ERP-1. Thus the hardness of ERP-1 and ERP-2 are
equivalent. ERP-1 is NP-hard if and only if ERP-2 is NP-
hard. Next, we present the proof of the NP-hardness of
ERP-2.

Our idea is to reduce the classical 0-1 Knapsack problem
into the ERP-2 problem. 0-1 Knapsack problem belongs to
the well known Karp's 21 NP-complete problems [9]. The
definition of 0-1 Knapsack problem is as follows [10].

There are n kinds of items denoted by ଵܹ, ଶܹ, … , ୬ܹ, and
let ܹ ൌ ሼ ଵܹ, ଶܹ, … , ௡ܹሽ . Each kind of item j has a
weight ௝ܵ and a value ௝ܸ. It is assumed that all weights and
values are nonnegative. The maximum weight can be
carried in the bag is C, and E is defined as the predefined
threshold of the total value of items, where C and E are
both nonnegative values. The number ௝ܺ of copies of each
kind of item is restricted to zero or one. The object of 0-1
Knapsack problem is to find a subset of items (equivalent
to assigning value to each ௝ܺ), subjecting to the following
two conditions:

∑ ௝ܵ
௡
௝ୀଵ ௝ܺ ൑ (5) ܥ

∑ ௝ܸ
௡
௝ୀଵ ௝ܺ ൒ ,ܧ ௝ܺ א ሼ0,1ሽ (6)

2

Figure 2: topology and traffic construction in the instance of ERP-2

The 0-1 Knapsack problem can be reduced to ERP-2

problem in polynomial time, which consists of three steps
as follows.
Step 1: Instance Construction

We first construct a specific topology G in ERP-2. The
set of all nodes in G is divided into n groups. Each group j
contains ௝ܵ nodes and ௝ܵ െ 1 links, as shown in Figure 2.
The network capacity of each link in group j is ௝ܸ. Then we
construct n flows: flow 1, flow 2, …, flow n. The source
node of flow j is the first node in group j, and the
destination is the last node in group j. Let ௝ܶ be the set of
nodes in the path of flow j, and ܶ ൌ ሼ ଵܶ, ଶܶ, … , ௡ܶሽ .
Therefore, the number of nodes in ௝ܶ is equal to ௝ܵ and the
throughput of flow j is equal to ௝ܸ . Finally, we let the
predefined threshold N be equal to C, and let the predefined
threshold K be equal to E.
Step 2: if the solution of 0-1 Knapsack problem exists, then
the solution of the ERP-2 instance also exists.

Proof:
If the solution of 0-1 Knapsack problem exists,

i.e., ܹ׌Ԣ ك ܹ, such that
∑ ௝ܵ ൑ ௐᇱאௐೕܥ

∑ ௝ܸ ൒ ௐᇱאௐೕ,ܧ 1 ൑ ݆ ൑ ݊.

Then ܶ׌Ԣ ك ܶ, such that
∑ ௝ܵ ൑ ்ܰೕ்אᇱ

∑ ௝ܸ ൒ ᇱ்אೕ்ܭ , 1 ൑ ݆ ൑ ݊.

Therefore, there exists a specific routing for n flows, so that
the number of nodes involved in the routing is not more
than N, and the total throughput is not less than K.
Consequently, the solution of the ERP-2 instance exists.

End.
Step 3: if the solution of the ERP-2 instance exists, then the
solution of 0-1 Knapsack problem also exists.

Proof:
If the solution of the ERP-2 instance exists, i.e., there

exists a specific routing for n flows, so that the number of
nodes involved in the routing is not more than N, and the
total throughput is not less than K. Let ܰܵ denote the set of
nodes involved in the routing, let the
function Thtሺܰܵሻdenote the total throughput of the flows
only traversing the nodes in ܰܵ, and let |ܰܵ| denote the
number of nodes in ܰܵ. Then

|ܰܵ| ൑ ܰ

Thtሺܰܵሻ ൒ .ܭ
We divide ܰܵ into two subsets: ܰܵ1 and ܰܵ2, subject to

ܰܵ ൌ ܰܵ1 ׫ ܰܵ2
ܰܵ1 ת ܰܵ2 ൌ .׎

ܰܵ1 and ܰܵ2 are defined by
ܰܵ1 ൌ ڂ ௝ܶ , ௝ܶ ك ܰܵ, 1 ൑ ݆ ൑ ݊

ܰܵ2 ൌ ܰܵ െ ܰܵ1.
Therefore, we can see that

Thtሺܰܵ2ሻ ൌ 0,
as the nodes in ܰܵ2 are not able to form a complete path
for any flow, and

Thtሺܰܵሻ ൌ Tht ሺܰܵ1ሻ ൅ Tht ሺܰܵ2ሻ ൌ Thtሺܰܵ1ሻ ൒ .ܭ
On the other hand,

|ܰܵ1| ൑ |ܰܵ| ൑ ܰ,
as ܰܵ1 is the subset of ܰܵ . Therefore we can find the
subset of items ܹԢ, such that

∑ ௝ܵ ൌ |ܰܵ1| ൑ ௐᇱאௐೕܥ

∑ ௝ܸ ൌ Thtሺܰܵ1ሻ ൒ ௐᇱאௐೕܧ .

Consequently, the solution of 0-1 Knapsack problem exists.
End.
Based on the three-step proof above, we conclude that

ERP-2 is an NP-hard problem, thus ERP-1 is also NP-hard.

3. HEURISTIC ROUTING ALGORITHM
In this section, we propose a heuristic routing algorithm

for an arbitrary DCN topology. We make a simple
assumption that TCP traffic is dominant in data centers and
networking is the bottleneck for data-intensive applications,
so the flows are regarded as elastic flows [11]. Moreover,
to avoid packet disorder, we use connection-unsplittable
routing, i.e., the packets from one flow takes only one path.

The object of our heuristic routing algorithm is to
compute the routing for all flows in traffic matrix, so that as
few switches as possible are involved in the routing to meet
a predefined performance threshold. The basic idea of the
algorithm is as follows. First, taking all switches into
consideration, we compute the routing and the
corresponding network throughput which are called basic
routing and basic throughput respectively. Second, we
gradually eliminate the switches from those involved in
basic routing, based on the specific elimination order
depending on the workload of switches. When the network
throughput decreases to the threshold we can tolerate, we
finish the elimination process and obtain the energy-aware

3

routing. Finally, we power off the switches not involved in
the energy-aware routing, or put them into sleep mode.

Our heuristic routing algorithm consists of three modules:
Route Generation (RG), Throughput Computation (TC),
and Switch Elimination (SE). The relationship among the
three modules is shown in Figure 3.

Figure 4 shows the pseudocode of our heuristic routing
algorithm (HRA). The input of the algorithm is the tuple
(G0, T, PR). G0 denotes the data center network topology, T
denotes the traffic matrix upon all servers, and PR is
performance threshold percentage, which is defined as the
network throughput we can tolerate over the basic
throughput using all switches. Here, we translate the
parameter K in the energy-aware routing model into PR for
legibly measuring performance decrement resulting from
energy-aware routing. In fact, the parameter K is equal to
PR multiplies by the basic throughput. The output of the
algorithm is the tuple (R, G). R denotes the energy-aware
routing we choose for T, and G denotes the topology not
containing the switches eliminated by SE().

Figure 3: Components of our algorithm

In Figure 4, we generate the basic routing R for T in

topology G0 shown in line 3, and compute the basic
throughput with the basic routing R in topology G0 shown
in line 5. From line 6 to line 13, we execute three modules
repeatedly until P is less than PR, where P is the ratio of
the throughput in G to the basic throughput in G0. In each
round, we first eliminate some switches and associated
links from G (the eliminating rule will be explained later)
shown in line 9. Then, we generate the routing for T in the
updated topology G, and compute the corresponding
throughput shown in line 10 and 11.

Route Generation: The role of the route generation
module is to select the routing for each flow in traffic
matrix so that the network throughput is as high as
possible. Each selected path can be computed with the
inputs (G, T), and the output of RG() is the routing paths
for all flows in traffic matrix in topology G.

For simplicity, we assume the capacity of links in
topology is the same. We compute the paths by
incrementally adding flows into the network. For a certain
flow, the ideal solution is to enumerate all possible paths
for a flow. However, it may not be practical for large-scale
networks. Hence, there is a tradeoff between the
computation complexity and the efficiency of the results.
Moreover, we can take advantage of topological

characteristic of data center networks to accelerate the path-
selection process.

HRA(G0, T, PR)

Notations:

G0: DCN topology

T: traffic matrix

PR: performance threshold percentage

begin

1 set G := G0;

2 //Route Generation

3 set R := RG(G, T);

4 //Throughput Computation

5 set Tht1:= TC(G, T, R);

6 do

7 begin

8 //eliminate the switches carrying the lightest traffic

9 set G := SE(G, T, R);

10 set R := RG(G, T);

11 set Tht2:= TC(G, T, R);

12 set P := Tht2 / Tht1;

13 end while(P>=PR)

14 return (R, G);

End
Figure 4: Heuristic routing algorithm

Assume there are a certain number of possible paths for a

flow. We first select the path with the fewest overlapping
flows over the bottleneck link in the path. If there are
multiple such paths, the one with the shortest hops is
chosen.

Throughput Computation: The module of throughput
computation is to calculate the network throughput in a
given topology. We use the Max-Min Fairness model [12]
to sum up the throughputs of all flows. The computational
complexity of TC() is Οሺܰܮଶሻ , where LN denotes the
number of links in topology.

Switch Elimination: The switch elimination module is
responsible for selecting the switches which can be
eliminated from the routing for the traffic matrix. We use a
greedy algorithm for the elimination process. First, we
compute the traffic carried by each active switch in
topology G, which is the total throughput of flows
traversing the switch. Then, we select the active switches
carrying the lightest traffic. And these switches can be put
into sleep mode or be shutdown. To accelerate the
computation process, we may eliminate more than one
switch from G per round. Another thing to note is that the
switches eliminated from G cannot be the critical ones, i.e.,
the topology will be partitioned without them.

4

(a)

(b)

Figure 5: Energy saved by our algorithm in BCube

(a)

(b)

Figure 6: Energy saved by our algorithm in Fat-Tree

4. EVALUATION
In this section, we evaluate our energy-aware routing

algorithm by simulation in BCube and Fat-Tree, both of
which are typical topologies for data center network.

4.1 Simulation Setup
For BCube(BN, BL) topology, where BN denotes the

number of ports in a switch and BL denotes the number of
levels, we set different values of BN and BL to vary the
topology scales. Similarly, we vary the number of ports in
switch in Fat-Tree, denoted as FP. We assume the network
capacity of all links in these topologies is 1Gbps. We
change the number of flows in a topology to simulate
different network load, and the traffic matrix is randomly
generated upon servers.

4.2 Results
Our simulation results in BCube are shown in Figure 5.

In Figure 5(a), we set performance threshold percentage as
95%, and evaluate the effect of energy saving on switches
with increasing network load for different topology scales
in BCube. The curves show that our energy-aware routing
algorithm significantly saves energy consumed by switches
at low network load. For example, in BCube(8,3), when the
number of flows is less than 1000, more than 20% energy

are saved; and the figure increases to 80% if the number of
flows is less than 100. As expected, the energy-saving
effectiveness decreases as the network load increases.

In Figure 5(b), we consider a certain BCube topology,
i.e., a BCube(8,3), but vary performance threshold
percentage. Not surprisingly, as the performance threshold
percentage increases, the energy-saving effect decreases,
because higher performance requirement indicates less
opportunities to eliminate switches. Hence, there is a
tradeoff to be made by data owners according to real
circumstances. Note that we can also save much energy
even without any performance sacrifice, i.e., the
performance threshold percentage is 100%, when the
network load is low.

Figure 6 shows the simulation results in Fat-Tree. In
Figure 6(a), we also set performance threshold percentage
as 95%. The curves show that our algorithm can also save
considerable energy consumed by switches at low load in
Fat-Tree. In Figure 6(b), we conduct the simulation in a
certain Fat-Tree topology, i.e., FP is 24. Similar to Bcube,
the effect of energy saving decreases as the performance
threshold percentage increases.

5. RELATED WORK
Data Center Network: Due to the well-known problem

of the current practice of tree topology, recently there are a

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

The Number of Flows

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

S
av

ed
 o

n
 S

w
it

ch
es

 (
%

)

BN=4,BL=2
BN=8,BL=2
BN=8,BL=3

60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

Performance Threshold Percentage (%)

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

S
av

ed
 o

n
 S

w
it

ch
es

 (
%

)

flow=500
flow=1000
flow=5000
flow=10000

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

The Number of Flows

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

S
av

ed
 o

n
 S

w
it

ch
es

 (
%

)

FP=12
FP=24
FP=48

60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

Performance Threshold Percentage (%)

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

S
av

ed
 o

n
 S

w
it

ch
es

 (
%

)

flow=500
flow=1000
flow=5000
flow=10000

5

bunch of proposals on new topologies for data centers.
These topologies can be divided into two categories. One is
switch-center topology, i.e., putting interconnection and
routing intelligence on switches, such as Fat-Tree [4],
Portland [13], and VL2 [14]. Contrarily, the other category
is server-centric, namely, servers, with multiple NIC ports,
also participate in interconnection and routing. DCell [6],
BCube [5] and FiConn [15], all fall into the latter category.

Green Internet: The problem of saving overall energy
in the Internet was firstly proposed by Gupta et al. in a
position paper [16]. Later, they explored the feasibility in
local area network [17], and proposed useful techniques to
put idle components in network devices into sleep. In
follow-on work, lots of efforts focused on device power
management [18] [19], realizing two modes: sleeping and
rate-adaptation on network devices to reduce energy
consumption during network idle or low-load times.
Moreover, Wisconsin-Madison University and Cisco
Systems advocated a broad approach including regarding
power-awareness as a primary objective in the design and
configuration of networks and protocols, and using mixed
integer optimization techniques to optimize the energy
consumption of network devices [20].

Green Data Center: There were also more and more
concerns with energy saving in data center network. New
low-power hardware [21] [22] [23] and smart cooling
technologies [24] were effective methods to save energy.
Intel Research proposed and evaluated the proxy
architecture which used a minimal set of servers to support
different forms of idle-time behavior for saving energy [25].
The similar idea was proposed in [26], which believed that
consolidation of applications in cloud computing
environments could present a significant opportunity for
energy optimization. In a recent work, Heller et al proposed
a network-wide power manager named ElasticTree [7] to
extend the idea of power proportionality into the network
domain, as first described by Barroso et al [27].

6. CONCLUSION
In this paper, we solve the energy-saving problem in data

center networks from a routing perspective. We first
formally established the model of energy-aware routing,
and proved that it is NP-hard by reducing 0-1 Knapsack
problem into it. Then, we proposed a heuristic algorithm to
solve the energy-aware routing problem. Simulation results
showed that our algorithm is effective in energy saving on
network devices in data centers, especially when the
network load is not high.

The work presented in this paper is preliminary, but
shows that energy-aware routing in DCN is promising. We
are also developing the prototype systems. In the future, we
hope to extend energy-aware routing to more general
application contexts, e.g., delay-sensitive applications.

7. Acknowledgment
This work was supported by HI-Tech Research and

Development Program of China (863) under Grants
2007AA01Z2A2.

8. REFERENCES
[1] S. Ghemawat, H. Gobioff, and S. Leung. The Google

File System. In SOSP, 2003.

[2] CloudStore. Higher Performance Scalable Storage.
http://kosmosfs.sourceforge.net/.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, 2004.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[5] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C.
Tian, Y. Zhang, and S. Lu. BCube: A High
Performance, Server-centric Network Architecture for
Modular Data Centers. In ACM SIGCOMM, August
2009.

[6] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A Scalable and Fault-Tolerant Network
Structure for Data Centers. In ACM SIGCOMM, pages
75–86, 2008.

[7] B. Heller, S. Seetharaman, P. Mahadevan. ElasticTree:
Saving Energy in Data Center Networks. In NSDI’10,
Apr 2010.

[8] U.S. Environmental Protection Agency. Data Center
Report to Congress. http://www.energystar.gov.

[9] R.M.Karp. Reducibility Among Combinatorial
Problems, in R.E.Miller and J.W. Thatcher (Eds.),
Complexity of Computer Computations. Plenum Press,
New York, 1972.

[10] A.Levitin. Introduction to the design & analysis of
algorithms. Addison-Wesley, 2003.

[11] D.Nace, N.L.Doan, E.Gourdin, B.Liau. Computing
Optimal Max-Min Fair Resource Allocation for Elastic
Flows. IEEE/ACM Transactions on Networking 16(6):
1272-1281, 2006.

[12] D.Bertsekas, R.Gallager. Data networks. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

[13] R. N. Mysore, et al. PortLand: A Scalable Fault-
Tolerant Layer 2 Data Center Network Fabric. In ACM
SIGCOMM, August 2009.

[14] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable
and Flexible Data Center Network. In ACM
SIGCOMM, August 2009.

[15] D. Li, C. X. Guo, H. T. Wu, K Tan, Y. G. Zhang, S. W.
Lu. FiConn: Using Backup Port for Server
Interconnection in Data Centers. In INFOCOM 2009.

[16] M. Gupta, S. Singh. Greening of the Internet. In ACM
SIGCOMM, Karlsruhe, Germany. August 2003.

[17] M. Gupta and S. Singh. Using Low-Power Modes for
Energy Conservation in Ethernet LANs.
INFOCOM’07, May 2007.

6

[18] S. Nedevschi et al. Reducing network energy
consumption via sleeping and rate-adaptation. In
Proceedings of the 5th USENIX NSDI, pages 323–
336, 2008.

[19] K. Christensen, B.Nordman, R.Brown. Power
Management in Networked Devices. In IEEE
COMPUTER SOCIETY, August 2004.

[20] J. Chabarek, J. Sommers, P. Barford, et al. Power
Awareness in Network Design and Routing.
INFOCOM’08, Apr 2008.

[21] G. Magklis, M. Scott, G. Semeraro, and etc. Profile-
based Dynamic Voltage and Frequency Scaling for a
Multiple Clock Domain Microprocessor. In ISCA’03,
Jun 2003.

[22] D. Meisner, B. Gold, T. Wenisch. PowerNap:
Eliminating Server Idle Power. In ASPLOS’09, May
2009.

[23] G. Ananthanarayanan and R. H. Katz. Greening the
Switch. HotPower’08, Dec 2008.

[24] C. Patel, C. Bash, R. Sharma, M. Beitelmam, and R.
Friedrich. Smart Cooling of data Centers. In
Proceedings of InterPack, July 2003.

[25] S. Nedevschi, J. Chandrashekar, and B. Nordman.
Skilled in the Art of Being Idle: Reducing Energy
Waste in Networked Systems. NSDI’09, Apr 2009.

[26] S. Srikantaiah, A. Kansal and F. Zhao. Energy Aware
Consolidation for Cloud Computing. HotPower’08,
Dec 2008.

[27] L. A. Barroso, U. Hlzle. The case for energy-
proportional computing. Computer, 40(12):33–
37,2007.

7

