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ABSTRACT 
The goal of data center network is to interconnect the 

massive number of data center servers, and provide 
efficient and fault-tolerant routing service to upper-layer 
applications. To overcome the problem of tree architecture 
in current practice, many new network architectures are 
proposed, represented by Fat-Tree, BCube, and etc. A 
consistent theme in these new architectures is that a large 
number of network devices are used to achieve 1:1 
oversubscription ratio. However, at most time, data center 
traffic is far below the peak value. The idle network 
devices will waste significant amount of energy, which is 
now a headache for many data center owners. 

In this paper, we discuss how to save energy 
consumption in high-density data center networks in a 
routing perspective. We call this kind of routing energy-
aware routing. The key idea is to use as few network 
devices to provide the routing service as possible, with 
no/little sacrifice on the network performance. Meanwhile, 
the idle network devices can be shutdown or put into sleep 
mode for energy saving. We establish the model of energy-
aware routing in data center network, and design a heuristic 
algorithm to achieve the idea. Our simulation in typical 
data center networks shows that energy-aware routing can 
effectively save power consumed by network devices. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Network 
topology; C.2.2 [Network Protocols]: Routing protocols 

General Terms 
Algorithms, Design 

Keywords 
Energy-aware Routing, Data Center Network, Bcube, Fat-
Tree 

1. INTRODUCTION 
Today’s data centers, containing tens of thousands of 

switches and servers, run data-intensive applications from 

cloud services such as search, web email, to infrastructural 
computations such as GFS [1], CloudStore [2], and 
MapReduce [3]. The goal of data center network (DCN) is 
to interconnect the massive number of data center servers, 
and provide efficient and fault-tolerant routing service to 
upper-layer applications. It is well known that the current 
practice of tree architecture in data centers suffers from the 
problems of low scalability, high cost as well as single 
point of failure. Hence, recently many advanced network 
architectures are proposed to replace the tree topology, 
represented by Fat-Tree [4], BCube [5] and etc. 

A common characteristic of these new data center 
architectures is that they expose much richer link 
connectivity, and enjoy a 1:1 oversubscription ratio. 
However, the high network capacity is especially 
provisioned for worst-case or busy-hour load, such as all-
to-all communicating pattern. At most time, data center 
traffic is far below the peak value. Specifically, traffic in 
data center network varies greatly between daytime and 
night. A clear diurnal pattern emerges: traffic peaks during 
the day and falls at night. Therefore, a great number of 
network devices work in idle state in these richly-connected 
data center networks. 

At the same time, the energy consumed by power-hungry 
devices now becomes a headache for many data center 
owners. According to figures, the total energy consumption 
of network devices in data centers of the US in 2006 was 3 
billion kWh [8]. It has been shown that network devices 
consume 20% ~ 30% energy in the whole data center [7], 
and the ratio will grow with the rapid development of 
power-efficient hardware and energy-aware scheduling 
algorithm on the server side [25]. Ideally, any idle switch 
would consume no power, and energy consumption would 
grow with increasing network load. Unfortunately, today’s 
network devices are not energy proportional. The fixed 
overheads such as fans, switching fabric, and line-cards 
waste energy at low network load. The energy consumption 
of network devices at low network load still accounts for 
more than 90% [7] of that at busy-hour load. So the large 
number of idle network devices in high-density networks 
waste significant amount of energy. 

In this paper, we discuss how to save energy 
consumption in richly-connected data center networks in a 
routing perspective. We call this kind of routing energy-
aware routing. The key idea is to use as few network 
devices to provide the routing service as possible, with 
no/little sacrifice on the network performance. Meanwhile, 
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the idle network devices can be shutdown or put into sleep 
mode for energy saving. 

We formally establish the model of energy-aware routing 
problem, and prove that it is NP-Hard. Then we propose a 
heuristic routing algorithm to achieve our design goal. The 
algorithm works in the following way. First, we compute 
the network throughput, which is the most important 
performance metric for data-intensive computations, 
according to the routing on all data center switches. The 
corresponding routing is called basic routing. Second, we 
gradually remove switches from the basic routing, until 
when the network throughput decreases to a predefined 
performance threshold. Third, switches not involved in the 
final routing are powered off or put into sleep mode.  

We conduct extensive simulations in typical data center 
networks to validate the effectiveness of our energy-aware 
routing algorithm. The results show that our energy-aware 
routing algorithm is a feasible and efficient method for 
saving energy consumed by network devices in data center 
network, especially under low network loads. 

The rest of the paper is organized as follows. Section 2 
formally establishes the model of energy-aware routing in 
DCN, and proves that it is an NP-hard problem. Section 3 
presents a heuristic routing algorithm to achieve energy-
aware routing in DCN. Section 4 evaluates our algorithm 
by simulations in typical data center networks. Section 5 
discusses related work and Section 6 concludes the paper. 

2. ENERGY-AWARE ROUTING MODEL 
In this section, we first formally establish the model of 

energy-aware routing problem. Then, we prove that it is an 
NP-Hard problem by reducing from 0-1 Knapsack problem 
into the energy-aware routing problem. 

2.1 Model Description 
The object of energy-aware routing is to compute the 

routing for a given traffic matrix, so that as few switches 
are involved as possible to meet a predefined performance 
threshold. Throughout this paper we use network 
throughput as the performance metric, since it is the most 
important metric for data-intensive computations. We can 
modelize the energy-aware routing problem as ERP-1. 

ERP-1: Assume there is a tuple of input parameters, (G, 
T, K). G denotes the topology of data center network, 
containing all servers and switches, and the connection 
relationships and network capacity among them. T denotes 
the traffic matrix upon all servers, in which 1 indicates 
there is a flow between two servers, while 0 means no such 
flow. K denotes the predefined threshold of network 
throughput. The object of energy-aware routing is to find a 
routing R1 for T, which subjects to the following two 
conditions: 

ሺܴ1ሻܮ ൌ Min ܮሺܴሻ, ܴ א ܴା   (1) 
ሺܴ1ሻܯ ൒  (2)   ܭ

where ܴା is the space of all possible routings for T, L(R1) 
denotes the number of switches involved in R1, and M(R1) 
is the network throughput of T under R1. 

2.2 NP Hardness 
To prove the NP-hardness of the energy-aware routing 

problem, we translate ERP-1 into an equivalent problem: 
ERP-2. 

ERP-2: Given there is a tuple of input parameters of (G, 
T, K, N), G, T, K denote topology, traffic matrix and 
predefined threshold respectively, which are the same as 
ERP-1. N is a threshold number. The object of ERP2 is to 
find a routing R2, satisfying the two conditions as follows: 

ሺܴ2ሻܮ ൑ ܰ   (3) 
ሺܴ2ሻܯ ൒  (4)   ܭ

where the functions of L(.) and M(.) are the same as those 
in ERP-1. 

The translation from ERP-1 to ERP-2 is shown in the 
following pseudocode. 

 
ERP-1(G, T, K) 

begin 

set N := the number of all switches in the network; 

While (the solution of ERP-2(G, T, K, N) exists) 

begin 

set result := ERP-2 (G, T, K, N); 
set N := N-1; 

end 

return result; 

end
Figure 1: Translation from ERP1 to ERP2 

 
From above it is clear that the solution of ERP-1 can be 

got by solving ERP-2 repeatedly, for at most N steps. 
Therefore, the hardness of ERP-1 is not harder than ERP2, 
i.e. ERP-1 ൑௣ ERP-2. On the other hand, obviously, ERP-
2 ൑௣ ERP-1. Thus the hardness of ERP-1 and ERP-2 are 
equivalent. ERP-1 is NP-hard if and only if ERP-2 is NP-
hard. Next, we present the proof of the NP-hardness of 
ERP-2. 

Our idea is to reduce the classical 0-1 Knapsack problem 
into the ERP-2 problem. 0-1 Knapsack problem belongs to 
the well known Karp's 21 NP-complete problems [9]. The 
definition of 0-1 Knapsack problem is as follows [10]. 

There are n kinds of items denoted by ଵܹ, ଶܹ, … , ୬ܹ, and 
let  ܹ ൌ ሼ ଵܹ, ଶܹ, … , ௡ܹሽ . Each kind of item j has a 
weight ௝ܵ and a value ௝ܸ. It is assumed that all weights and 
values are nonnegative. The maximum weight can be 
carried in the bag is C, and E is defined as the predefined 
threshold of the total value of items, where C and E are 
both nonnegative values. The number ௝ܺ of copies of each 
kind of item is restricted to zero or one. The object of 0-1 
Knapsack problem is to find a subset of items (equivalent 
to assigning value to each ௝ܺ), subjecting to the following 
two conditions: 

∑ ௝ܵ
௡
௝ୀଵ ௝ܺ ൑  (5)   ܥ

∑ ௝ܸ
௡
௝ୀଵ ௝ܺ ൒ ,ܧ ௝ܺ א ሼ0,1ሽ   (6) 
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Figure 2: topology and traffic construction in the instance of ERP-2 

 
The 0-1 Knapsack problem can be reduced to ERP-2 

problem in polynomial time, which consists of three steps 
as follows. 
Step 1: Instance Construction 

We first construct a specific topology G in ERP-2. The 
set of all nodes in G is divided into n groups. Each group j 
contains ௝ܵ  nodes and ௝ܵ െ 1 links, as shown in Figure 2. 
The network capacity of each link in group j is  ௝ܸ. Then we 
construct n flows: flow 1, flow 2, …, flow n. The source 
node of flow j is the first node in group j, and the 
destination is the last node in group j. Let ௝ܶ be the set of 
nodes in the path of flow j, and ܶ ൌ ሼ ଵܶ, ଶܶ, … , ௡ܶሽ . 
Therefore, the number of nodes in ௝ܶ  is equal to ௝ܵ and the 
throughput of flow j is equal to  ௝ܸ . Finally, we let the 
predefined threshold N be equal to C, and let the predefined 
threshold K be equal to E. 
Step 2: if the solution of 0-1 Knapsack problem exists, then 
the solution of the ERP-2 instance also exists. 

Proof: 
If the solution of 0-1 Knapsack problem exists, 

i.e., ܹ׌Ԣ ك ܹ, such that 
∑ ௝ܵ ൑ ௐᇱאௐೕܥ   

∑ ௝ܸ ൒ ௐᇱאௐೕ,ܧ  1 ൑ ݆ ൑ ݊. 

Then ܶ׌Ԣ ك ܶ, such that 
∑ ௝ܵ ൑ ்ܰೕ்אᇱ   

∑ ௝ܸ ൒ ᇱ்אೕ்ܭ , 1 ൑ ݆ ൑ ݊. 

Therefore, there exists a specific routing for n flows, so that 
the number of nodes involved in the routing is not more 
than N, and the total throughput is not less than K. 
Consequently, the solution of the ERP-2 instance exists. 

End. 
Step 3: if the solution of the ERP-2 instance exists, then the 
solution of 0-1 Knapsack problem also exists. 

Proof: 
If the solution of the ERP-2 instance exists, i.e., there 

exists a specific routing for n flows, so that the number of 
nodes involved in the routing is not more than N, and the 
total throughput is not less than K. Let ܰܵ denote the set of 
nodes involved in the routing, let the 
function Thtሺܰܵሻdenote the total throughput of the flows 
only traversing the nodes in ܰܵ, and let |ܰܵ| denote the 
number of nodes in ܰܵ. Then 

|ܰܵ| ൑ ܰ  

Thtሺܰܵሻ ൒  .ܭ
We divide ܰܵ into two subsets: ܰܵ1 and ܰܵ2, subject to  

ܰܵ ൌ ܰܵ1 ׫ ܰܵ2  
ܰܵ1 ת ܰܵ2 ൌ  .׎

ܰܵ1 and ܰܵ2 are defined by 
ܰܵ1 ൌ ڂ ௝ܶ , ௝ܶ ك ܰܵ, 1 ൑ ݆ ൑ ݊ 

ܰܵ2 ൌ ܰܵ െ ܰܵ1. 
Therefore, we can see that 

Thtሺܰܵ2ሻ ൌ 0, 
as the nodes in ܰܵ2 are not able to form a complete path 
for any flow, and 

Thtሺܰܵሻ ൌ Tht ሺܰܵ1ሻ  ൅ Tht ሺܰܵ2ሻ ൌ Thtሺܰܵ1ሻ ൒  .ܭ
On the other hand, 

|ܰܵ1| ൑ |ܰܵ| ൑ ܰ, 
as ܰܵ1  is the subset of ܰܵ . Therefore we can find the 
subset of items ܹԢ, such that  

∑ ௝ܵ ൌ |ܰܵ1| ൑ ௐᇱאௐೕܥ   

∑ ௝ܸ ൌ Thtሺܰܵ1ሻ ൒ ௐᇱאௐೕܧ . 

Consequently, the solution of 0-1 Knapsack problem exists.  
End. 
Based on the three-step proof above, we conclude that 

ERP-2 is an NP-hard problem, thus ERP-1 is also NP-hard. 

3. HEURISTIC ROUTING ALGORITHM 
In this section, we propose a heuristic routing algorithm 

for an arbitrary DCN topology. We make a simple 
assumption that TCP traffic is dominant in data centers and 
networking is the bottleneck for data-intensive applications, 
so the flows are regarded as elastic flows [11]. Moreover, 
to avoid packet disorder, we use connection-unsplittable 
routing, i.e., the packets from one flow takes only one path. 

The object of our heuristic routing algorithm is to 
compute the routing for all flows in traffic matrix, so that as 
few switches as possible are involved in the routing to meet 
a predefined performance threshold. The basic idea of the 
algorithm is as follows. First, taking all switches into 
consideration, we compute the routing and the 
corresponding network throughput which are called basic 
routing and basic throughput respectively. Second, we 
gradually eliminate the switches from those involved in 
basic routing, based on the specific elimination order 
depending on the workload of switches. When the network 
throughput decreases to the threshold we can tolerate, we 
finish the elimination process and obtain the energy-aware 
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routing. Finally, we power off the switches not involved in 
the energy-aware routing, or put them into sleep mode. 

Our heuristic routing algorithm consists of three modules: 
Route Generation (RG), Throughput Computation (TC), 
and Switch Elimination (SE). The relationship among the 
three modules is shown in Figure 3. 

Figure 4 shows the pseudocode of our heuristic routing 
algorithm (HRA). The input of the algorithm is the tuple 
(G0, T, PR). G0 denotes the data center network topology, T 
denotes the traffic matrix upon all servers, and PR is 
performance threshold percentage, which is defined as the 
network throughput we can tolerate over the basic 
throughput using all switches. Here, we translate the 
parameter K in the energy-aware routing model into PR for 
legibly measuring performance decrement resulting from 
energy-aware routing. In fact, the parameter K is equal to 
PR multiplies by the basic throughput. The output of the 
algorithm is the tuple (R, G). R denotes the energy-aware 
routing we choose for T, and G denotes the topology not 
containing the switches eliminated by SE(). 

 

 
Figure 3: Components of our algorithm 

 
In Figure 4, we generate the basic routing R for T in 

topology G0 shown in line 3, and compute the basic 
throughput with the basic routing R in topology G0 shown 
in line 5. From line 6 to line 13, we execute three modules 
repeatedly until P is less than PR, where P is the ratio of 
the throughput in G to the basic throughput in G0. In each 
round, we first eliminate some switches and associated 
links from G (the eliminating rule will be explained later) 
shown in line 9. Then, we generate the routing for T in the 
updated topology G, and compute the corresponding 
throughput shown in line 10 and 11. 

Route Generation: The role of the route generation 
module is to select the routing for each flow in traffic 
matrix so that the network throughput is as high as 
possible. Each selected path can be computed with the 
inputs (G, T), and the output of RG() is the routing paths 
for all flows in traffic matrix in topology G.  

For simplicity, we assume the capacity of links in 
topology is the same. We compute the paths by 
incrementally adding flows into the network. For a certain 
flow, the ideal solution is to enumerate all possible paths 
for a flow. However, it may not be practical for large-scale 
networks. Hence, there is a tradeoff between the 
computation complexity and the efficiency of the results. 
Moreover, we can take advantage of topological 

characteristic of data center networks to accelerate the path-
selection process. 

 
HRA(G0, T, PR) 

Notations: 

G0: DCN topology 

T: traffic matrix  

PR: performance threshold percentage  

begin 

1    set G := G0; 

2    //Route Generation 

3    set R := RG(G, T); 

4    //Throughput Computation  

5    set Tht1:= TC(G, T, R); 

6    do 

7    begin 

8          //eliminate the switches carrying the lightest traffic  

9         set G := SE(G, T, R); 

10       set R := RG(G, T); 

11       set Tht2:= TC(G, T, R); 

12       set P := Tht2 / Tht1; 

13   end while(P>=PR ) 

14   return (R, G); 

End
Figure 4: Heuristic routing algorithm 

 
Assume there are a certain number of possible paths for a 

flow. We first select the path with the fewest overlapping 
flows over the bottleneck link in the path. If there are 
multiple such paths, the one with the shortest hops is 
chosen. 

Throughput Computation: The module of throughput 
computation is to calculate the network throughput in a 
given topology. We use the Max-Min Fairness model [12] 
to sum up the throughputs of all flows. The computational 
complexity of TC() is  Οሺܰܮଶሻ , where LN denotes the 
number of links in topology. 

Switch Elimination: The switch elimination module is 
responsible for selecting the switches which can be 
eliminated from the routing for the traffic matrix. We use a 
greedy algorithm for the elimination process. First, we 
compute the traffic carried by each active switch in 
topology G, which is the total throughput of flows 
traversing the switch. Then, we select the active switches 
carrying the lightest traffic. And these switches can be put 
into sleep mode or be shutdown. To accelerate the 
computation process, we may eliminate more than one 
switch from G per round. Another thing to note is that the 
switches eliminated from G cannot be the critical ones, i.e., 
the topology will be partitioned without them. 
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(a) 

 
(b) 

Figure 5: Energy saved by our algorithm in BCube 

 
(a) 

 
(b) 

Figure 6: Energy saved by our algorithm in Fat-Tree 
 

4. EVALUATION 
In this section, we evaluate our energy-aware routing 

algorithm by simulation in BCube and Fat-Tree, both of 
which are typical topologies for data center network. 

4.1 Simulation Setup 
For BCube(BN, BL) topology, where BN denotes the 

number of ports in a switch and BL denotes the number of 
levels, we set different values of BN and BL to vary the 
topology scales. Similarly, we vary the number of ports in 
switch in Fat-Tree, denoted as FP. We assume the network 
capacity of all links in these topologies is 1Gbps. We 
change the number of flows in a topology to simulate 
different network load, and the traffic matrix is randomly 
generated upon servers. 

4.2 Results 
Our simulation results in BCube are shown in Figure 5. 

In Figure 5(a), we set performance threshold percentage as 
95%, and evaluate the effect of energy saving on switches 
with increasing network load for different topology scales 
in BCube. The curves show that our energy-aware routing 
algorithm significantly saves energy consumed by switches 
at low network load. For example, in BCube(8,3), when the 
number of flows is less than 1000, more than 20% energy 

are saved; and the figure increases to 80% if the number of 
flows is less than 100. As expected, the energy-saving 
effectiveness decreases as the network load increases.  

In Figure 5(b), we consider a certain BCube topology, 
i.e., a BCube(8,3), but vary performance threshold 
percentage. Not surprisingly, as the performance threshold 
percentage increases, the energy-saving effect decreases, 
because higher performance requirement indicates less 
opportunities to eliminate switches. Hence, there is a 
tradeoff to be made by data owners according to real 
circumstances. Note that we can also save much energy 
even without any performance sacrifice, i.e., the 
performance threshold percentage is 100%, when the 
network load is low. 

Figure 6 shows the simulation results in Fat-Tree. In 
Figure 6(a), we also set performance threshold percentage 
as 95%. The curves show that our algorithm can also save 
considerable energy consumed by switches at low load in 
Fat-Tree. In Figure 6(b), we conduct the simulation in a 
certain Fat-Tree topology, i.e., FP is 24. Similar to Bcube, 
the effect of energy saving decreases as the performance 
threshold percentage increases. 

5. RELATED WORK 
Data Center Network: Due to the well-known problem 

of the current practice of tree topology, recently there are a 
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bunch of proposals on new topologies for data centers. 
These topologies can be divided into two categories. One is 
switch-center topology, i.e., putting interconnection and 
routing intelligence on switches, such as Fat-Tree [4], 
Portland [13], and VL2 [14]. Contrarily, the other category 
is server-centric, namely, servers, with multiple NIC ports, 
also participate in interconnection and routing. DCell [6], 
BCube [5] and FiConn [15], all fall into the latter category. 

Green Internet: The problem of saving overall energy 
in the Internet was firstly proposed by Gupta et al. in a 
position paper [16]. Later, they explored the feasibility in 
local area network [17], and proposed useful techniques to 
put idle components in network devices into sleep. In 
follow-on work, lots of efforts focused on device power 
management [18] [19], realizing two modes: sleeping and 
rate-adaptation on network devices to reduce energy 
consumption during network idle or low-load times. 
Moreover, Wisconsin-Madison University and Cisco 
Systems advocated a broad approach including regarding 
power-awareness as a primary objective in the design and 
configuration of networks and protocols, and using mixed 
integer optimization techniques to optimize the energy 
consumption of network devices [20]. 

Green Data Center: There were also more and more 
concerns with energy saving in data center network. New 
low-power hardware [21] [22] [23] and smart cooling 
technologies [24] were effective methods to save energy. 
Intel Research proposed and evaluated the proxy 
architecture which used a minimal set of servers to support 
different forms of idle-time behavior for saving energy [25]. 
The similar idea was proposed in [26], which believed that 
consolidation of applications in cloud computing 
environments could present a significant opportunity for 
energy optimization. In a recent work, Heller et al proposed 
a network-wide power manager named ElasticTree [7] to 
extend the idea of power proportionality into the network 
domain, as first described by Barroso et al [27]. 

6. CONCLUSION 
In this paper, we solve the energy-saving problem in data 

center networks from a routing perspective. We first 
formally established the model of energy-aware routing, 
and proved that it is NP-hard by reducing 0-1 Knapsack 
problem into it. Then, we proposed a heuristic algorithm to 
solve the energy-aware routing problem. Simulation results 
showed that our algorithm is effective in energy saving on 
network devices in data centers, especially when the 
network load is not high. 

The work presented in this paper is preliminary, but 
shows that energy-aware routing in DCN is promising. We 
are also developing the prototype systems. In the future, we 
hope to extend energy-aware routing to more general 
application contexts, e.g., delay-sensitive applications. 
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