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Abstract: Android has become the most prevalent mobile system, but in the meanwhile malware on this platform is widespread.
System call sequences are studied to detect malware. However, malware detection with these approaches relies on common
system-call-subsequences. It is not so efficient because it is difficult to decide the appropriate length of the common
subsequences. To address this issue, the authors propose a new approach, back-propagation neural network on Markov chains
from system call sequences (BMSCS). It treats one system call sequence as a homogeneous stationary Markov chain and
applies back-propagation neural network (BPNN) to detect malware by comparing transition probabilities in the chain. Since
transition probabilities from one system call to another in malware are significantly different from those in benign applications,
BMSCS can efficiently detect malware by capturing the anomaly in state transitions with the help of BPNN. The authors
evaluate the performance of BMSCS by experiments with real application samples. The experiment results show that the F-
score of BMSCS achieves up to 0.982773, which is higher than the other methods in the literature.

1 Introduction
Computer security has always been a serious problem. With mobile
terminals becoming more and more prevalent, mobile security is
increasingly prominent [1–4]. Due to the growing popularity and
openness, Android has attracted the most consideration of
malicious elements and a hacker can easily write malicious code
and spread it. Malware aiming specifically at Android devices has
increased at an alarming rate [5]. Furthermore, Android has unique
properties and specific limitations due to its mobile nature. This
makes it more difficult to detect malware with conventional
techniques. Therefore, it is rather important to develop a new and
efficient approach to detecting Android malware.

Researchers have explored two types of methods to detect
Android malware. The first type is static analysis, which aims to
recognise signatures of the malicious applications without actually
executing them [6–9]. Many binary forensic techniques can be
used in static analysis, including de-compilation, decryption,
pattern matching and so on. Yet these methods cannot detect
unknown malware as any application can have distinct signatures
by means of encryption and obfuscation [10]. Therefore, the
second type of methods, dynamic analysis, is proposed [11–17].
These approaches can monitor application's behaviours such as
network access, phone calling and message sending at run time.

The dynamic behaviours of an application are conducted by
system call sequences at the end. Therefore, researchers can
leverage system call sequences in the dynamic analysis [11–14].
The previous mechanism that uses system call sequences to detect
malicious applications usually consists of the following steps: first
generating common subsequences of system call sequences of
malware, second filtrating the common subsequences appearing in
system call sequences of benign applications. If the left common
subsequences exist in an application's system call sequence, the
application is identified as malware. Nevertheless, these methods
are inefficient and cannot achieve a desirable detection rate. The
critical limiting factor is the length of the common subsequence.
When the common subsequence is too short, the information used
to describe the action of an application is insufficient. However, the
action is the key character in identifying malicious applications.
When the common subsequence is too long, for instance, longer
than 45 system calls, it tends to be over fitting [14, 18].

Furthermore, it usually takes too much time to obtain the common
system-call-subsequences. The longer the common subsequence is,
the more time it takes (even weeks) [18].

To overcome the above shortcoming, in this paper we put
forward a new approach for Android malware detection, back-
propagation neural network on Markov chains from system call
sequences (BMSCS). The Markov chain has been employed in the
field of network security [19, 20] and the Markov logic network
has been adopted in Android malware detection [21]. Inspired by
Xiao et al. [22], where they applied homogeneous stationary
Markov chains to masquerade detection, we introduce this model
in mobile malware detection. Based on the fact that there are some
specific correlations between the adjacent system calls (e.g. first
memory access, second screen display, then user input
requirement), we treat the system call sequence activated by one
application as one Markov chain. To get low time complexity, we
only take two state dependency into consideration. Each distinct
system call corresponds to one unique state in the chain. There are
196 system calls in Android 4.0.4, thus the state number is 196. In
[19, 20], the numbers of states in these Markov chains are
relatively small. However, there are 196 states in our method.
Hence, it cannot solve the problem only by directly analysing each
element in the matrices. Some classifiers are required to help
further process these matrices.

In our scheme, we first calculate the transition probability
matrices by statistical methods and then convert them into vectors
of 196 × 196 dimensions. Our key assumption is that the
probabilities of transition from one system call to another are
significantly different between malicious applications and benign
ones. According to this assumption, the above vectors are fed to the
classifier, artificial neural network (ANN), to discriminate malware
from benign applications on Android. The classification process
consists of the training phase and the detection phase. During the
training phase, the ANNs (neural networks, in abbreviation) are
trained by back-propagation algorithm, which are called as back-
propagation neural networks (BPNNs). Finally, we do the
experiments on the malware from [23] and the benign applications
downloaded from Google. The results indicate that the F-score of
our method achieves up to 0.982773, higher than those of [8, 9,
14].
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The main contributions are as follows:

i. We use the Markov chains instead of the common
subsequences to extract the character of system call sequences.
According to the Markov property [22, 24, 25], a system call
should only be related with the current system call and should
have no relationships with prior calls. The transition
probability matrices of the chains only record the frequencies
of each pair of system calls. Therefore, BMSCS is independent
of the common system-call-subsequences. The time to get the
subsequences is eliminated.

ii. We employ BPNNs to capture the anomaly in state transitions
in the chain to categorise the Android application as malicious
or benign one for the first time based on the assumption that
there are remarkable differences between the probabilities of
transition from one system call to another in malware and
those in benign applications.

iii. We do a large number of experiments on the real dataset
including 1227 malicious applications from [23] and 1189
benign ones downloaded from Google. The effects of the
depth, the number of hidden-layer nodes and the learning rate
of BPNNs on the performance are all investigated. Moreover,
we provide the comparison with the previous methods. The
high performance of BMSCS justifies our assumption is
reasonable.

The rest of this paper is organised as follows. Section 2 offers a
concise introduction to system calls, Markov chains and neural
networks. The detailed three steps of our new approach are
explained in Section 3. Then Section 4 presents the experiment
environment and experiment results. The recent literature is briefly
surveyed in Section 5 followed by the conclusion and further work
in Section 6.

2 Background
2.1 System call

It is the operating system's main task to manage hardware
resources and provide a good environment for application
developers. To fulfil this task, the kernel provides a series of
scheduled kernel functions to application developers by a set of
interface, known as system calls. System calls transfer application's
requests to the kernel, call the corresponding kernel functions to
finish the required work, and then return the results to the
application. On the Android platform, the user process cannot
directly access hardware devices. When a user process needs to
access hardware devices, such as reading disk files and receiving
network data, it has to switch from the user mode to the kernel
mode by system calls. The Android version in our work is 4.0.4,
and there are only 196 system calls in our experiments. The
Android kernel is a simplified version of Linux kernel. Compared
with traditional Linux, there are some unique behaviours in
Android, such as message sending and call making. As a result,
there are many differences between the system call actions of
Android and Linux.

2.2 Markov chain

A Markov chain is a discrete random process with the Markov
property [22, 24, 25]. One process changes randomly, and it is
generally impossible to predict with certainty the state of a Markov

chain at a given point in the future. However, the statistical
properties of the process's future can be predicted [20, 24, 25]. The
Markov chain is a good and versatile model and widely used.
 
Definition 1: A discrete random process {cn, n ≥ 1} is a Markov
chain with state space Θ  = {1, 2, …} if it satisfies the Markov
property, i.e. for all n ≥ 1 and θm ∈ Θ with 1 ≤ m ≤ n + 1Pr (�� + 1 = �� + 1 |�� = ��, �� − 1 = �� − 1, …, �1 = �1) = Pr (�� + 1= �� + 1 |�� = ��)

(1)

That is to say that in the Markov chain the next state depends only
on the current state and not on the states that preceded it. The
Markov property is very useful in terms of explicitly finding the
probability of a vast number of interesting events [26].
 
Definition 2: A Markov chain {cn, n ≥ 1} is homogeneous if the
conditional probabilities ���(�) = Pr (�� + 1 = �|�� = �) are
independent of n for all i.j ∈ Θ.
 
Definition 3: Let {cn, n ≥ 1} be a homogeneous Markov chain and��� = Pr �� + 1 = �, �� = � , �� = Pr �1 = � for all �, �∈ Θ .
P = [pij] is the matrix of the conditional probabilitiespij, called the
(one-step) transition (probability) matrix. A = [ai] is a row vector
representing the probability mass function of c1, called the initial
(probability) distribution of the Markov chain.
 
Theorem 1: A Markov chain {cn, n ≥ 1} is completely characterised
by the initial distribution A and the transition matrix P, i.e.Pr (�1 = �1, …, �� − 1 = �� − 1, �� = ��) = ��1 × ��1, �2 ×⋯× ��� − 1, �� (2)

 
Definition 4: A Markov chain {cn, n ≥ 1} is stationary if the initial
distribution A and the transition matrix P satisfy� = � × � (3)
 
Theorem 2: Let {cn, n ≥ 1} be a stationary Markov chain, thenPr (�� = �) = Pr (�1 = �) = �� (4)

From Theorems 1 and 2, it is easy to obtain:
 
Theorem 3: Let {cn, n ≥ 1} be a homogeneous stationary Markov
chain, thenPr (�� = ��, …, �� − 1 = �� − 1, �� = ��) = ��� × ���, ��+ 1 ×⋯× ��� − 1, ��, 1 ≤ � < � (5)

2.3 Neural network

Inspired by an animal's central nervous system, artificial neural
networks (ANNs) attempt to parallel and simulate the functionality
and decision-making processes of the human brain. A neural
network is a massively parallel distributed processor consisted of
simple processing units. The processor has a natural propensity for
storing experiential knowledge, making it available for use [27,
28].

ANNs are generally referred to as mathematical models of
theorised mind and brain activity. They are presented as systems of
interconnected ‘neurons’ which can compute values from inputs.
Fig. 1 shows the model of a ‘neuron’ labelled k. 

The neuron k in Fig. 1 can be depicted by the following three
mathematical equations:

Fig. 1  Model of a ‘neuron’ labelled k
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�� = ∑� = 1
� ����� (6)

�� = ��+ �� (7)�� = �(��) (8)

�(�) = 11 + exp −�� (9)

BPNN is the most common ANN. It is trained by the back-
propagation algorithm, which is a solution to the problem of
training multi-layer perceptrons [29]. BPNNs have been applied in
many applications such as automotive, robotics, banking and
electronic.

3 Our approach
There have been some works that utilise common subsequences of
system call sequences [14, 18]. The disadvantage is that when the
common subsequence is too short, the information is insufficient to
detect malware and while the common subsequence is too long, it
may cause over-fitting. Not only that, it takes too much time to get
long common subsequences. It is hard to choose the appropriate
length of the common subsequences. In this paper, we use the
Markov chains instead of the common subsequences to extract the
character of system call sequences. BMSCS is independent of the
common system-call-subsequences, without extracting the
subsequences. Our method can be divided into three steps: (i)
character extraction, (ii) training, and (iii) detection.

3.1 Character extraction

On the Android platform, strace, a command-line tool, can be used
to track and record the system call sequence invoked by a process.
Another command, monkey, can be used to send the stream of
random- and pseudo-user events to applications. We at first use
monkey to simulate 1000 user events and then employ strace to
record the system call sequence of one application. Finally, by

numbering all the 196 system calls from 0 to 195, we convert the
system call sequence from the character form to the number form.

For the sake of simplicity, homogeneous stationary Markov
chains are used to extract the character from system call sequences.
Each distinct system call corresponds to one unique state of the
Markov chain. Thus, we can count the times of transition from one
system call to another one to calculate the transition probability
matrix. For instance, suppose there are only four system calls,
noted as A, B, C and D, and the system call sequence is as follows:� − � − � − � − � − � − � − � − � − � − � − � − �− � − � − �
We number the system calls A, B, C, D as 0, 1, 2, 3. Then the above
system call sequence turns into the following form:0 − 0 − 1 − 2 − 3 − 1 − 2 − 3 − 0 − 1 − 0 − 2 − 3 − 1− 2 − 2
The transition times from system call i to system call j is noted as
aij. In this case, a00 = 1, a01 = 2, a02 = 1, a03 = 0 and so on. Then we
define, pij, the transition probability from system call i to system
call j, in the following way:

��� = ���∑���� (10)

According to formula (10), we can get the transition probability
matrix

� = ��� 4 × 4 = 0.25 0.5 0.25 00.25 0 0.75 00 0 0.25 0.750.33 0.67 0 0
The pseudo-code of calculating the transition probability matrix is
shown in Fig. 2 

Fig. 2  Algorithm of calculating the transition probability matrix
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3.2 Training

In our approach, we employ a special network, BPNNs. After
calculating all the transition probability matrices of the applications
in the training data, all the rows of one matrix are joined head to
tail together to construct a vector. The input of the training phase is
{x(n), d(n)}, where x(n) is the vector constructed from the nth
sample in the training data and d(n) is the corresponding label. d(n)
is defined as follows: when the application is malicious, d(n) = 1,
otherwise, d(n) = 0. In the training step, the primary work is to train
the networks so that they have the ability to distinguish malware
from benign applications. Note there are 196 × 196 input-layer
nodes and only one output-layer node in our networks. We use the
following back-propagation algorithm in Algorithm 1 to train the
BPNNs [27, 29]:
 
Algorithm 1: Algorithm of back propagation:
The algorithm cycles through the training sample�(�), �(�) � = 1�  as follows:

i. Initialisation. Pick the synaptic weights and thresholds from a
uniform distribution whose mean is zero.

ii. Presentations of Training Examples. Present the network an
epoch of training examples. For each example in the training
data do the forward computation in point (iii) and the
backward computation in point (iv).

iii. Forward Computation. Compute the induced local fields and
function signals of the network by proceeding forward through
the network, layer by layer. The induced local field ��(�)(�) for
neuron j in layer l is defined as��(�)(�) = ∑� ���(�)(�)��(� − 1)(�) (11)

where ���(�)(�) is the synaptic weight of neuron j in layer l that
is fed from neuron i in layer l−1 and ��(� − 1)(�) is the output of
neuron i in layer l−1 at iteration n. When i = 0,��0(�)(�) = ��(�)(�) is the bias applied to neuron j in layer l and�0(� − 1)(�) = + 1. The output of neuron j in layer l is��(�)(�) = �(��(�)) (12)

When l = 1, ��(0)(�) = the jth element of x(n). The depth of the
network is denoted by L. When l = L, calculate the error signal
as follows: �(�) = �(�) − �1(�)(�) (13)

iv. Backward Computation. Compute the local gradients, δs, of
the network by the formula�(�)(�) = �(�)�′(�1(�)(�)) (14)

for the neural in output-layer L and��(�)(�) = �′ ��(�)(�) ∑� ��(� + 1)(�)���(� + 1)(�) (15)

for neural j in hidden-layer l. Then adjust the synaptic weights
of the network in layer l using the rule���(�) � + 1 = ���(�) � + � Δ���(�) � − 1+���(�) � ��(� − 1) � (16)

where η is the learning-rate parameter and α is the momentum
constant.

v. Iteration. Iterate the forward computation in point (iii) and the
backward computation in point (iv) by presenting new epochs
of training examples to the network until the chosen stopping
criterion is met.

3.3 Detection

By means of the back-propagation algorithm, the BPNNs have
gained the ability to classify the application as benign or malicious.
In this step, the network only requires forward computations. First,
the transition probability matrices of the applications in the testing
data are calculated, and then transformed into the corresponding
vectors. At last, we feed the vectors to the trained BPNNs.
According to formulas (11) and (12), the final results are obtained
by computing the output of each node in the network layer by
layer. The value of the output node is between 0 and 1. The
networks use this value to do the classification. When the value is
>0.5, the application will be recognised as malicious one,
otherwise will be recognised as benign one.

4 Experiments and results
4.1 Datasets and experimental design

There are 1227 malicious applications and 1189 benign ones in our
experimental datasets. The malware, consisting of 49 malware
families, is offered by Zhou and Jiang [23]. By modifying the
Chrome Apk-downloader plugin, we downloaded 1189
applications from the Google Play as the benign applications. Half
of the malicious application dataset and half of the benign
application dataset are used for training and the rest for detection.
We wrote the programs of ANNs in C++ and executed them on
Ubuntu. In our experiments, the momentum constant of networks,
α, is set to zero. To speed up the execution, the programs utilised
an application program interface (API), OpenMp, which supports
multiprocessing programming.

Let TP denote the number of malicious applications that are
correctly detected, and FP refer to the number of benign
applications that are falsely detected as malware. On the contrary,
TN represents the number of benign applications that are correctly
detected, and FN refers to the number of malicious applications
that are falsely detected as benign ones. Based on these numbers,
some criteria are proposed to evaluate the experiment results, such
as true positive rate (TPR), false positive rate (FPR), precision and
F-score. TPR, i.e. detection rate, is defined as

TPR = TPTP + FN (17)

FPR is defined as

FPR = FPFP + TN (18)

Precision is defined as

Precision = TPTP + FP (19)

F-score is a composite evaluation criterion of TPR and FPR, which
can indicate the performance of a detection system. When the value
of TPR is higher and the value of FPR becomes smaller, the
detection system will achieve a higher F-score and a better
performance. F-score is the harmonic mean of the precision and the
TPR, defined as

�−score = 2 × Precision × TPRPrecision + TPR (20)

4.2 Experimental analysis

The structure of the networks, including two aspects, i.e. the depth
and the hidden-layer node number, impacts the experiment results.
However, the determination of the optimal number of hidden layers
and that of nodes in each layer is one of the most critical tasks in
the ANN design. One starts with no prior knowledge as to the
number and size of hidden layers [28]. Thus, in order to get higher
F-score and TPR as well as lower FPR, we need to choose the
appropriate structure with experimentation.
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4.2.1 Three-layer networks: In the case of the three-layer
networks, the number of input-layer nodes is 38,416 and that of
output-layer nodes is 1. We set the learning rate to 0.9. To build a
three-layer network with a good F-score, this work has to adjust
the number of the hidden-layer nodes to an appropriate value. For
the purpose of studying the fine-grain detection performance of the
hidden-layer node number, the increment of the hidden-layer node
number becomes smaller and smaller as shown in Figs. 3–5, i.e. 50,
10 and 1, respectively. 

Fig. 3a illustrates the TPR and the FPR of the three-layer
networks, of which the hidden-layer node number ranges from 50

to 300 with the interval of 50. The number on the right side of one
point is the number of the hidden-layer nodes corresponding to this
point. Fig. 3b shows the F-score and the precision of the networks.
As depicted in Fig. 3b, when the hidden layer has 200 nodes, the
network gets the highest F-score of 0.981788. Meanwhile, the FPR
is 0.0016835 and the TPR goes up to 0.965798 as shown in Fig. 3a.
There is no regular pattern between the F-score and the number of
hidden-layer nodes in Fig. 3b. It is because that there is no rule
about the performance and the structure of ANNs [28].
Nevertheless, all the F-scores are above 0.95, which indicates
BMSCS achieves a high performance.

Fig. 4a shows the TPR and the FPR of the three-layer networks
where the hidden-layer node number ranges from 10 to 100 with
the increment of 10. Fig. 4b illustrates the F-score and the
precision of the networks. As plotted in Fig. 4a, the network of ten
hidden-layer nodes detects 96.4169% malicious applications at a
FPR of 0.0117845. Subsequently, it achieves the highest F-score of
0.976092 in Fig. 4b. It is clear that the network gets a better
performance when the hidden-layer node number is <40. If the
network has too many hidden-layer nodes, it will follow the noise
in the data due to over parameterisation leading to poor
generalisation. Therefore, it gets non-optimal results. Moreover,
with the increasing number of hidden-layer nodes, training
becomes excessively time consuming [28]. Hence, in practice, the
hidden-layer node number should be set to 10.

Fig. 5a depicts the TPR and the FPR of the three-layer
networks, of which the hidden-layer node number ranges from 1 to
40 with the interval of 1. In our experiment, the FP fluctuates
within a small range, 3–12, and the value of FP + TN is a constant
number of 594. Hence, according to formula (12), the variation of
the FPR only depends on the fluctuation of the FP. As the FP could
only be ten different values, the FPR could just achieve ten
different values. Thus, many points have the same FPR. As shown
in Fig. 5a, these points are on the same vertical line. Fig. 5b shows
the F-score and the precision of the networks. It can be seen that all
the F-scores of our method are around 0.975. As illustrated in
Fig. 5, when the hidden layer has 37 nodes, the network gets the
highest F-score of 0.980328 at a TPR of 0.973941 and a FPR of
0.013468.

4.2.2 Four-layer networks: In the case of the four-layer
networks, the number of input-layer nodes, the number of output-
layer nodes and the value of the learning rate are the same as those
in the third-layer network, i.e. 38,416, 1 and 0.9 respectively. The
number of second-hidden-layer nodes is kept as a constant of 10.
We adjust the first-hidden-layer node number to obtain different
detection rates. Fig. 6a illustrates the TPR and the FPR of the four-
layer networks, of which the first-hidden-layer node number ranges
from 50 to 700 with the interval of 50. The number on the right
side of one point is the first-hidden-layer node number
corresponding to this point. Fig. 6b depicts the F-score and the
precision of the networks. The network of 600 first-hidden-layer
nodes arrives at the highest F-score of 0.981997. As shown in
Fig. 6a, simultaneously the TPR goes up to 0.977199 and the FPR
goes down to 0.013468. It is obvious that the network has a better
performance when the first-hidden-layer node number is between
450 and 650. 

To further investigate the fine-grain performance of the first-
hidden-layer node number between 450 and 650, Fig. 7a
demonstrates the TPR and the FPR of the four-layer networks
where the first-hidden-layer node number ranges from 450 to 600
with the interval of 10. Fig. 7b plots the F-score and the precision
of the networks. As depicted in Fig. 7b, the network achieves the
highest F-score of 0.982773 while the first-hidden-layer has 490
nodes. At the same time, the TPR is 0.97557 and the FPR is
0.010101. There is little difference in the results of the node
number between 490 and 600. The reason may be that the interval,
10, is so small compared with the first-hidden-layer node number
that it can be even ignored. 

4.2.3 Comparison between three-layer networks and four-
layer networks: Table 1 lists the highest F-scores of the three-
layer networks and the four-layer networks. In general, the more

Fig. 3  Experiment results of the three-layer networks where the number of
hidden-layer nodes ranges from 50 to 300 with the interval of 50
a Result of TPR and FPR
b Result of F-score and precision

 

Fig. 4  Experiment results of the three-layer networks where the number of
hidden-layer nodes ranges from 10 to 100 with the interval of 10
a Result of TPR and FPR
b Result of F-score and precision

 

IET Inf. Secur.
© The Institution of Engineering and Technology 2016

5



layers the network has, the higher detection rate it will get.
Therefore, in the table the F-score of the four-layer network is
higher than the three-layer network. However, with the more
layers, the structure of ANN becomes more complex and it requires
more time to train and test. Hence, in the practical use of BMSCS,
the tradeoff between the detection rate and the time complexity
should be considered in the determination of the network's depth. 

4.2.4 Influence of learning rates: Table 2 shows the variation of
the training times and the F-score with the different learning rates
from 0.1 to 0.9, in which the three-layer networks of ten hidden-
layer nodes are used. In the cases with the learning rate from 0.9 to

0.2, the network converges. When the learning rate becomes
smaller, it needs more times to train the network to convergence.
While the learning rate is 0.1, the network cannot converge, even
though the training times more than 13,000. It can be seen from the
table that the changes of F-score are relatively slight with the
variation of learning rates. The learning rate mainly decides the
learning speed of neural networks. The more training times mean
the higher computation complexity. In this case, taking the training
times and the F-score into comprehensive consideration, we can set
the learning rate to 0.7. 

4.3 Comparison with other methods

To evaluate the experiment results, this work compares the F-score,
the TPR and the FPR with Peiravian [8], Drebin [9] and system call
sequence droid (SCSDroid) [14]. The results are shown in Table 3.
The method in [8] employed static analysis to detect malware by
combining permissions and API calls as the input of machine
learning methods. Drebin [9] performed a broad static analysis on
permissions, API calls and network addresses and used support
vector machine (SVM) to do the classification. SCSDroid [14]
used common system-call-subsequences to identify malicious
repackaged applications. The F-scores of these approaches were
not explicitly given in [8, 9, 14]. We calculate them by using
formulas (17)–(20) according to the results in these papers. 

Although the FPRs of Drebin and BMSCS are the same, the
TPR of BMSCS is much higher than that of Drebin. BMSCS
exhibits good performance in terms of a much higher F-score.
Compared with Peiravian, the TPR of BMSCS is much higher and
the FPR is much lower, and then BMSCS achieves a much higher
F-score. With comparison to SCSDroid, the TPR of BMSCS is a
little lower, but the FPR is much lower and consequently the F-
score is much higher. An F-score close to 1 indicates the good
performance on correctly recognising malware. It can be concluded
that, in general, BMSCS performs better than Drebin, Peiravian
and SCSDroid. This can attribute to the following reasons. At first,
system calls can satisfactorily describe the dynamic behaviours of
one application, which outperforms the static analysis of Drebin
and Peiravian. Second, the relationships between two adjacent
system calls are taken into consideration in the Markov chain.
Furthermore, ANNs have the strong self-study ability and the
potential for high fault tolerance. Thus, BMSCS can get a better
detection result.

5 Related works
There are two types of methods with respect to Android malware
detection, namely static/dynamic analysis. In static analysis, it does
not need to execute an application but to check whether an
application has malicious signatures [6–8, 30, 31]. Enck et al. [6]
treated violating permissions that an application claims at install
time as signatures. However, the violating permissions are neither
necessary nor sufficient. Thus, the method did not get a high
detection rate. Meanwhile, Fuchs et al. [7] disassembled the source
file and checked permissions and data flow of application
components in source code. This approach also suffers from the
drawback of Enck et al. Zhou et al. [31] proposed a method to
detect the repackaged malware. It calculates similarity scores
between the original app and the repackaged malware.
Nevertheless, it is difficult to get original official applications
especially for those unpopular ones. In [8], Peiravian and Zhu
combined permissions and API calls as features and used machine
learning methods to recognise malicious applications. Drebin [9]
employed SVM with the comprehensive features involving
permissions, API calls and network addresses. Aafer et al. [32]
extracted relevant features to malware behaviour captured at API
level, and evaluated different classifiers using the generated feature
set.

All the static analysis methods cannot detect malware that has
unknown malicious signatures. Therefore, the dynamic analysis
methods are put forward. In dynamic analysis, it requires running
information of applications [11–13, 15, 33]. Enck et al. [15]
proposed TaintDroid, an extension to the Android, which tracks the
flow of privacy sensitive data through 30-party applications.

Fig. 5  Experiment results of the three-layer networks where the number of
hidden-layer nodes ranges from 1 to 40 with the interval of 1
a Result of TPR and FPR
b Result of F-score and precision

 

Fig. 6  Experiment results of the four-layer networks where the number of
first-hidden-layer nodes ranges from 50 to 700 with the interval of 50
a Result of TPR and FPR
b Result of F-score and precision
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TaintDroid can only detect the specific malware attempting to steal
sensitive data. In [11], Blasing et al. presented AASandbox which
is able to perform both static and dynamic analyses to
automatically detect suspicious applications. AASandbox gets a
low detection rate. In [12], Burguera et al. put forward CrowDroid,
which counts the numbers of system calls, and has the same defect
as AASandbox.

Another dynamic analysis mechanism is to use common
subsequences of system call sequences. Rozenberg et al. [18]
employed common system-call-subsequences to detect malware on
the Windows platform. In the training phase, the method utilises
sequential pattern discovery using equivalence classes (SPADE)
and genetic algorithm to extract common subsequences of system
call sequences that only exist in malware but not in benign
software. In the testing phase, it monitors the software in run time
and checks whether there exists a match between a portion of the
sequences of the run-time system calls and one or more of the
common subsequences. In [14], Lin et al. proposed SCSDroid,
which adopts the thread-grained system call sequence activated by
applications on the Android platform. Like the way in [18],
SCSDroid extracts the malicious common subsequences from
system call sequences of malware. These methods all suffer from

the same drawback: the time complexity of the algorithm to obtain
the common subsequences is too high, even taking several weeks.
In our method, instead of the common system-call-subsequences,
Markov chains are used to describe the dynamic character. The
identification does not depend on the common subsequences,
which avoids the critical issue of the length of the subsequence.
Our method eliminates the time of getting the common
subsequences and simultaneously improves the detection
performance.

The Markov theory has been applied in the field of network
security [19, 20]. Gupta and Dharmaraja [19] presented a general
analytical framework of dependability model for a voice-over
Internet protocol (VoIP) system. This model is analysed with the
semi-Markov process which captures the effects of non-Markovian
nature of the time spent at various states of the system. Kuang et al.
[20] proposed a fuzzy prediction method of network security
situation. The method adopts the transition matrix of the Markov to
depict the correlation of network security and predict the security
status. In [19, 20], the state numbers in the Markov chains are
relatively small. Therefore, each element in the transition matrices
can be analysed directly by researchers. However, the transition
matrices in our method are 196 × 196 dimensions. The number of
elements in the matrix is so great that we cannot analyse every
element by ourselves. In our method, the elements are further
processed by ANNs. Owing to the strong self-study ability and the
potential for high fault tolerance of ANNs, BMSCS gets a good
detection result.

In [22], Xiao et al. assumed that shell command sequence can
be regarded as a Markov chain and employed Markov chains for
masquerade detection. Inspired by Xiao et al. [22], this paper
assumes the system call sequence activated by an application as a
homogeneous stationary Markov chain. Taking the correlations
between the system calls into consideration, BMSCS achieves an
F-score as high as 0.982773.

6 Conclusion and further work
This work proposes a new method, BMSCS, which adopts BPNNs
to classify the transition probability matrix of the Markov chain
generated from system call sequences for Android malware
detection. We assume that the transition probabilities from one
system call to another one are significantly different between
malicious applications and benign ones. The F-score of BMSCS
can reach 0.982773, higher than the other methods, which verifies
the rationality of our assumption.

There are some directions for further study based on Markov
chains from system call sequences to detect mobile malware. At
first, two system call dependency, i.e. the next system call only
dependent on the current one, is considered in our Markov chain
with low time complexity. In the future, we will implement the
method on the mobile phones with limited resources. Second, some
other classifiers besides ANNs can be used. It is important to find
which classifier is the best in this problem. Third, the number of
the states of Markov chains can be reduced, and based on the small
matrices it will be easy to identify malware. In this case, how to
reduce the state number becomes challenging. In addition, there are
some limitations of our approach. If the attacker writes the
malware to issue a lot of normal system call sequences like a

benign application, our method cannot detect this malware. Our
future work will focus on how to detect this kind of malware.
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