
FICUS: Fast Incremental Consistent Update in SDN
based on Relation Graph

Qing Li∗, Lei Wang∗, Yong Jiang∗, Guangwu Hu∗, Mingwei Xu†,Qingmin Liao∗
∗ Graduate School at Shenzhen, Tsinghua University, Shenzhen, China

† Tsinghua University, Beijing, China

Abstract—In Software Defined Networking (SDN), the config-
uration inconsistency during updates is one main source of net-
work instability. An efficient updating scheme with configuration
consistency is required. In this paper, we propose the scheme of
Fast Incremental Consistent Update for SDN (FICUS) based on
the relation graph (RG). In our scheme, we analyse the relation
between update operations, construct the relation graph and find
a proper order of these update operations to avoid inconsistency.
To solve the problem, we define two types of relations: the path
dependency relation and the path rejection relation. We evaluate
our scheme and algorithms by comprehensive experiments. The
results show that our scheme needs only 10%-40% of the rules
compared with the two-phase update scheme and speeds up the
update process by 40% in average.

I. INTRODUCTION

As a future network architecture, Software Defined Net-
working (SDN) decouples the forwarding plane and the control
plane, centralizes the intelligence of the network into the
controller [1, 2]. The controller generates rules according to
the routing/forwarding policies and distributes them into the
switches. The switches are only responsible for forwarding
packets according to the rules. SDN can be employed to
simplify the management of the network [3–5]. In all of
these systems, a reliable scheme is required to update the
configuration (rules) fast and exactly.

Although SDN employs the approach of centralized con-
trolling, it is still a distributed system in the respect of
configuration updating. Every switch processes the packets
according to its flow table. Therefore, during the configuration
update, the flow tables of these devices may be inconsistent
[6], which may cause forwarding loop, black hole, service
disruption, etc. Therefore, to avoid these problems, consistency
must be guaranteed during the network update.

Several schemes [7–11] have been proposed to guarantee the
consistency of the configuration during the network transiting
between two configurations. Two phase update (TP) [7] is
proposed to divide the process of configuration update into
two phases. This scheme can guarantee that every packet is
processed by only one configuration (old or new) but never by
the mixed during the network update. It ensures the consistent
properties with no loop and black hole. However, it requires
the network to reinstall the whole configuration (all rules) even
if only a few rules are changed. Dionysus [11] improves the
median update speed through the relations between the update
operation, resource and path. But it only adapts to tunnel-based
forwarding and WCMP forwarding. For data center networks,

zUpdate [10] ensures congestion-free during network updates
under asynchronous switches and traffic matrix changes. The
core of zUpdate is a programming model which enables
lossless transitions when the network changes.

According to the observations, consistency requirements
impose some relations between the update operations. For
example, switch Sn is the next hop of switch Sm in the
configuration to be updated; Sm is the next hop of Sn in the
old configuration. To avoid the forwarding loop, the update
operation on Sn must be performed before Sm. Violating
the updating order may lead to inconsistency and cause the
forwarding loop. In this paper, we propose the scheme of Fast
Incremental Consistent Update for SDN (FICUS), which is
based on the relation graph (RG).

In FICUS, when a configuration update is invoked, we
first analyse the relations between the update operations and
generate a relation graph where the nodes are the update
operations and the directed links are the relations between
these operation. For the packet-level consistency, there are two
types of relations: the path dependency relation and the path
rejection relation. The path dependency is used to ensure the
destination is reachable and the path rejection can guarantee
that the packets are transferred correctly. We then design the
efficient algorithms to find a proper order of these operations
from the RG.

We implement our scheme using POX controller and
Mininet [12] platform. The comprehensive experiment results
show that: 1) FICUS needs only 10%-40% of the rules com-
pared with the traditional update scheme; 2) FICUS installs
the rules 40% faster on average.

The contributions of this paper can be concluded as follows:
• We analyse the relations between the update operations.

For the packet-level consistent update, we define the path
dependency relation and the path rejection relation.

• We propose a new consistent update scheme based on
the relation graph. We construct a relation graph for the
operations. With the help of relation graph, we can find
a proper order to install these update.

• The comprehensive experiment results show that FICUS
makes a significant improvement on reducing the required
rules and the updating time.

The remainder of this paper is organised as follows. In
Section II, we show the network update model. In Section III,
we describe our consistent mechanism based on the relation
graph. In Section IV, we present the preliminary results of



our simulation. In Section V, we analyse the related works.
Finally, we give the conclusion and discussion in Section VI.

II. THE UPDATE MODEL

In this section, we present the model to describe the network
update process clearly. In our model, we abstract the packet
as a point and the rule as a hypercube in the match space.

Rule, r. In our discussion, we define a rule as a tuple r =
(m, a, pri). The match field m identifies the rule uniquely. a
is the action of the rule. The pri is an integer representing
the priority of the rule. Let rs be the default rule set in our
discussion. We use ms to denote the match field set and msi

to denote the match set of the rules with the priority of i and
use m̂i to denote the match set of the rules with the priorities
bigger than i.

Topology, T . We define the network position lp as a two-
tuple (s, p) where s is the switch and p is the ingress port of
s. Let LP be the set of all the possible network positions from
the perspective of data plane (the controller is not included).
We define the topology function as follows: T (lp) = lp′

denotes that lp and lp′ are connected in the topology.
Configuration, C. In SDN, the configuration C is the

collection of rules which are installed in the switches. Thus
the configuration can be described as a set {(lpi, rulei)|lpi ∈
LP, rulei ∈ rs}.

Network, N . The network N can be defined as a tuple
(C, T ). Topology T denotes the physical connection rela-
tionships between the network devices, and Configuration C
contains the forwarding behaviors in the data plane.

Network Update Process. In SDN, an update operation
must have a location where the rule is installed or deleted.
We define update operation u as (lp, r). It means that the
new rule r should be installed at the network position of lp.
For a packet pkt, after pkt leaves the network, it has a trace
t. Trace t is an ordered list ([(lpj , rj)]) where lpj is the jth
network position along the path of packet pkt and rj is the
corresponding rule for the packet at lpj . The expression lpj ∈ t
means lpj appears in the trace t. It is similar for ri ∈ t and
ui ∈ Ci. Due to the definition of update operation, a trace can
also be described as an ordered list of update operation, i.e.,
[uj ]. The trace of a packet shows the behaviors in the data
plane, thus we can get the current trace and infer the trace
after update operations.

The network update process can be defined as:

if C ′ = override(C, us)

then N
C′

−→ N ′

where N = (C, T ), N ′ = (C ′, T )

The function override(C, us) means: for the two-tuple u =
(lp, r), u ∈ us, if u /∈ C, add u to C; if u ∈ C, do nothing.
We set a higher priority for the updating (new) rules compared
with the old ones. The expression N C′

−→ N ′ means under the
configuration of C ′, the network N changes to N ′.

Consistent property. In SDN, the update message is
forwarded to the switch from the controller and then the
switch updates its flow table accordingly. The switch is only

responsible for forwarding packets. The consistent property
should be guaranteed during the update as forwarding faults
may occur in the chaos of old and new configurations.

For different networks, there are different consistent prop-
erty requirements. Generally, the connectivity should be firstly
guaranteed in the network. In our paper, we first propose
the path dependency relation between the update operations,
which is used to guarantee the switch can forward the packet
correctly when the packet comes in. It can guarantee the
loop and black-hole free property during the update. We then
propose the path rejection relation between update operations
to guarantee the packet-level consistent property. For different
consistent properties, different relations can be provided. Then
a relation graph (RG) can be generated based on these relations
and a proper update order will be discovered.

III. FAST INCREMENTAL CONSISTENT UPDATE

In this section, we propose the scheme of Fast Incremental
Consistent Update for SDN (FICUS). In software defined
networking, the controller translates the policy into the config-
uration and then installs them into the switch. The basic idea
of our mechanism is analysing the relationship between the
update operations and finding a proper order to install them
incrementally. In our mechanism, we guarantee the packet-
level consistent property.

A. Construct Relation Graph

Let N and N ′ be the old and new network. Let us be an up-
date sequence. Trace t′ belongs to network N ′. location(u, t)
is a function, which returns the network position lp of the
input update operation u in the trace t.

Definition 1 (Path dependency). We set the conditions as
follows:
• C ′ = override(C, us)

• N
C′

−→ N ′

• ui, uj ∈ us
• ui, uj ∈ t′

• location(uj , t
′) < location(ui, t

′)

Then we define: ui
d−→ uj , i.e., uj depends on ui and ui should

be installed before uj .

In this definition, we impliedly define a partial ordered
relation of network position. lpj < lpi means if a packet
flow according to the trace, it will come to network position
lpj earlier than lpi. A path dependency (ui

d−→ uj) means
if two update operations belong to the same trace, the later
operation depends on the former one. This relation exists
because the former operation works before the later one.
During the updating, ui should be installed before uj .

For example, in Figure 1, the updating rule at S2 depends
on the updating rule at S1. For simplification, we use [X,Y ] to
denote the rules. [X,Y ] means if the destination of the packet
is X , forward it to the switch Y . Therefore, if [S4, S1] at S2
is installed before [S4, S3] at switch S1, the old configuration
with low priority at S1 still works. Then the packets will be



forwarded back to S2, and it will cause the forwarding loop
between S1 and S2. According to the Definition 1, in the new
trace t′ after update, the packet will pass network position
(S2, x) earlier than (S1, y), we should update the rules in
S1 first. x and y are the ingress port of the switches for the
incoming packet.

S1

S3

S2

S4

[S4, S2]

[S4, S4]

[S4, S4][S4, S3]

[S4, S1]

[X, Y], to X, forward to Y
A rule in the old configuration

[X, Y], to X, forward to Y

A rule in the new configuration

Figure 1. Path Dependence of Two Updating Rules.

Beside of the update operations appearing in the same trace,
we show another scenario. Let N and N ′ be the old and new
network. Let us be an update operation sequence. There are
two update operations ui = (lpi, ri) and uj = (lpj , rj). The
packet p follows trace tp in network N and t′p in N ′.

Definition 2 (Path rejection). The conditions are set as fol-
lows:

• C ′ = override(C, us)

• N
C′

−→ N ′

• ui, uj ∈ us
• ui ∈ t′p, uj /∈ t′p, rj ∈ uj
• pB rj
• ui, uj ∈ tp
• location(lpi, tp) < location(lpj , tp)

Then we define: ui
r−→ uj , i.e., ui rejects uj and ui should be

installed before uj .

The symbol pBrj (defined in the previous section) denotes
the rule rj has the highest priority among all the rules which
can match the packet p, and it performs when the packet p
arrives. Suppose in switch sj , there exist the certain packets
following the old configuration. An update operation uj at
sj may influence these packets. If another update operation
ui at switch si is performed, the packets that belong to this
flow will not pass the switch sj any more. We say that ui
rejects uj . The relation between these two operations is path
rejection. For example, in Figure 2, the new routing policies
include: the packets to S4 from S5 should be dropped and
the packets to S4 from S1 should be forwarded to S3. Two
updating the update operations including [S4, S3] at S1 and
[S4, Drop] at S2 can achieve the goal of these policies. By
Definition 2, [S4, S3] at S1 rejects [S4, Drop] at S2. If the
later one is installed first, packets from s1 will be dropped at
S2. This behavior violates the routing policy, and generates a
black hole during the process of upgrading rules.

Given the initial network configuration C, based on C, if
any two update operations ui and uj have the relation of

ui
d/r−−→ uj (ui

d−→ uj or ui
r−→ uj), we say that a partial

order exists between them: ui ≺ uj .

S1

S3

S2

S4[S4, S2]

[S4, S4]

[S4, S4]

[S4, S3]

[S4, Drop]

[X, Y], to X, forward to Y
A rule in the old configuration

[X, Y], to X, forward to Y

A rule in the new configuration

S5

[S4, S2]

Figure 2. Path Rejection of Two Updating Rules.

Table I
UPDATE OPERATIONS

Name Position Rule PriorityMatch Action
U1 (S1,3) SIP:192/8 To 1 H
U2 (S2,1) SPORT:22 To 2 H
U3 (S3,1) SPORT:22 To 3 H
U4 (S1,3) SIP:128/8 To 2 H

Definition 3 (Update Partial Order ≺). The update partial
order ≺ between two update operations ui and uj means that

ui ≺ uj ⇔ ui
d/r−−→ uj .

To be simple, we use (ui, uj)C to represent the partial order
of ui and uj based on the initial network configuration C.

The partial order ui ≺ uj means ui should be updated
before uj . If the relation is dependency, the packets are
forwarded from lpj to lpi. Otherwise the relation is rejection,
the packets will pass lpi and do not pass lpj . However, we
will always update ui firstly regardless the flow direction. In
other words, we can construct a directed graph based on the
partial order. This directed graph is the relation graph (RG).
According to the RG, we can schedule the order of update
operations.

As Figure 3 shows, there are five switches and two flows in
the network. The match fields of the two flows are source IP:
192/8, port: 22 (denoted by solid line) and source IP: 128/8,
port: 22 (denoted by dotted line). The behaviors of these two
flows are shown in Figure 3(a) and after the configuration
updates, they change as Figure 3(b) shows. The priority of
rules in the old configuration is L. The update operations are
in Table I. The relation of these update operations are shown
in Figure 3(c).

It is straightforward that given an initial configuration and
the update configuration, we can analyse the path dependency
relation and the path rejection relation. Then we can construct
the relation graph accordingly, as Figure 3(c) shows. In Figure
3(c), the update operations are nodes and the relations are
edges. In the RG, the relationship in the edges is either
path dependency or path rejection. The edge direction is set
according to the partial order of the update operations. We
design the algorithm of Generate-RG to describe the relations
between the update operations and generate the RG.

In Algorithm 1, the node of the directed graph is a tuple
of network position and rule. Every node has the match space
as the attributes denoted by mi. We use a queue to store the
visited nodes and traverse the other nodes by BFS (Breadth
First Search). If we initialize the queue with update operations



(a) Current State (b) Target State (c) Relation Graph (d) Simplified Relation Graph

Figure 3. A configuration update example.

us and assign the new configuration to rs, we will get the
traces which belong to the new network. Through these traces,
we can get the path dependency relations between these update
operations. If we initialize the queue with the old rules which
will be replaced by the update operations and assign the old
configuration to rs, we will get the old traces. Comparing with
the old and new traces, we can get the path rejection relation.
Based on the two relations, we can add the link and construct
the RG. In this algorithm, the operation judging the relation
type of the link is included in the function addLink.

Algorithm 1 Generate-RG
1: # Graphic Node:(lpi, ri), Node attribute: mi

2: # Queue:st = [(lpi, ri)]
3: # The start points of the path are stored in the queue
4: while st.front()6= φ do
5: (lpi, ri) =st.dequeue()
6: # traverse all the outports of packets
7: for lp′i = T (lp) do
8: if lp′i 6= φ then
9: # traverse all the next rules

10: for r′i ∈
⋂

rs(ri) do
11: RG.addNode(lp′i, r

′
i, re(m

′
i))

12: # re(m′i) = m′i −m′i
⋂ ˆ
m′prii

13: RG.addLink((lpi, ri), (lp′i, r
′
i))

14: st.enqueue(lp′i, r
′
i)

15: end for
16: end if
17: end for
18: end while

B. Process Simplified Relation Graph

Theorem 1. Suppose configuration C turns into configuration
C ′ as a set of update operations us are installed. If the relation
graph is a Directed Acyclic Graph (DAG), topological sorting
for this DAG can get an ordered list of update operation nodes.
The order of this list is a proper order for scheduling the
update operations.

The proof of this theorem is straightforward. The definition
of partial order determines the installation order of two update
operations. Based on the topological sorting, the ordered node
list do not break the partial order. Because the node in the
list with the a larger index is impossible to have a directed
edge pointing to the node with a smaller index. That means
the order of this list conforms with the partial order strictly.

Lemma 1. Only take into account path dependency relation,
there are no loop in the RG for a single trace.

Proof. According to the definition of trace, it is a ordered
list of [(lpj , rj)] where lpj is the jth network position along
the path of packet pkti and rj is the corresponding rule for
the packet at lpj . Because black hole and loop free are the
basic properties for packet forwarding and the trace is the
equivalent of the data plane path, the network positions are
different from each other in the trace, i.e., there is no repeated
network position for a single trace. It is straightforward that
loop free can be guaranteed in the RG for a single trace.

Loop free property cannot always be guaranteed especially
for multiple traces. However, for some networks, if the strong
consistency property is not required, the path rejection relation
can be ignored. The path dependency relation can guarantee
that there are no loops or disconnections. If a weaker con-
sistency property is required and some inconsistencies can be
accepted, we can treats the path rejection relation as the path
dependency relation. In these situations, we can ignore the
rejection relation in the loop. For some networks that need a
very strong consistency property, we use the two-phase scheme
[7] to update the left operations. We omit the details for this
step due to the space limitation.

IV. EVALUATION

In this section, we use the platform Mininet[12] and POX
controller [13] to emulate the performance of our work FICUS
(marked as relation in the figures).

The topology of the network is ”Chinanet” from the topol-
ogy zoo[14]. In this topology, there are 43 nodes and 66 links.
First, we put 12 hosts into this network and connect each one
to a random switch in the topology. First, we use the prefixes
in the BGP RIB table (Jan 1st, 2015) from the RouteView
Project [15] and the shortest routing application to generate
the configuration (We add 12 outports to the network and
distribute these prefixes to the outports). Second, we put 12
hosts into the network and use the shortest routing (broadcast)
application to generate the configuration. The shortest routing
application computes the shortest path between the hosts and
generates the configuration. The broadcast application uses the
spanning tree algorithm to generate the configuration. Third,
the traffic subjects to Poisson distribution. The inter-arrival
times are exponentially distributed and the durations are power
law distribution.

To simulate the configuration update, we disable the links
to trigger the controller to regenerate the configuration using



(a) Rule VS Link Failure Rate (b) Completion Time (c) Completion Time of 50th, 90th, 99th

Figure 4. Shortest Path Routing

(a) Rule VS Link Failure Rate (b) Completion Time (c) Completion Time of 50th, 90th, 99th

Figure 5. Broadcast Routing

the shortest path routing or the broadcast application. For
each experiment, we tested three update mechanisms: (1)
the violence mechanism is that the controller installs the
update operations in the network, which is optimal in terms of
update speed and does not care the consistent property. These
operations are in the new configuration and not in the old
configuration; (2) the two-phase mechanism proposed in [7];
(3) our incremental mechanism based on the relation graph
(RG).

As Figure 4(a) shows, we count the update operations
installed of three mechanisms. We use the update operations
of the old configuration as the basis. As the link failure
rate increases, the network will be cut into more connected
components and the update operations of the new configuration
will be less. The number of rules in our mechanism is nearly
the number in the violence mechanism. Even the link failure
rate is 30%, the number of rules in our mechanism or the
violence mechanism is less than half of rules in the two-phase
mechanism. As the shortest path routing application computes
the shortest path between the hosts and generates rules for
each path. In other words, there are no path rejection relations
in this test. So the number of rules in violence and our relation
graph schemes are equal.

In Figure 4(b), we set the parameters of the normal distri-
bution are 4 and 5 (the mean is 4 and the jitter is 5). The link
failure rate in this test is 10%. The violence mechanism costs
14 ms to update the configuration. The time of our relation
graph mechanism is 29 ms and the two-phase mechanism is
about 31 ms. When the two-phase mechanism begins, 85%
rules in our mechanism have been installed.

We also compare the three mechanisms, by varying the jitter
of the normal distribution. Figure 4(c) shows the 50th, 90th
and 99th percentile update completion time, under different

parameters of the normal distribution. The pair {a, b} means
a is the mean and b is the jitter. For example in {4, 3} case,
our mechanism is 115%, 38%, 15% faster than the two-phase
mechanism. As the jitter increases, the completion time of
these three mechanisms all increases, but our mechanism is
still faster than the two-phase mechanism.

We regenerate the new configuration using the broadcast
application during the network changes. In our relation graph
mechanism, we break the circle of the dependency path
relation, find the proper order through the relation graph
and update the left update operations using the two-phase
mechanism. In Figure 5(a), the rules installed in our scheme
or violence scheme are both less than the two-phase scheme.
Figure 4(a) and 5(a) show that the incremental scheme is more
suitable for the small-scale update. That is because in the
incremental scheme most of the rules which are both in the old
and new configurations are not installed again. In Figure 5(b),
we set the parameters of the normal distribution are 4 and 5
too. The link failure rate in this test is 10%. When the two-
phase mechanism begins, 85% rules in our mechanism have
been installed. Figure 5(c) shows the 50th, 90th and 99th per-
centile update completion time under different parameters of
the normal distribution. As the jitter increases, the completion
time of all the three mechanisms increase, but our mechanism
is still faster than the two-phase mechanism.

V. RELATED WORK

As SDN is used in the cloud computing and data centers [16,
17], many works have been proposed to maintain consistent
properties during configuration update in SDN.

In the paper of [6], the consistent update has been explored
first and two criteria of consistent update mechanism (packet
consistency and flow consistency) are proposed. Reitblatt [7]



provides a network model and the two-phase commit for the
packet-level consistent update. To guarantee the flow-level
consistency property, the dividing periodically mechanism is
proposed. But during the configuration update, the two-phase
commit needs double FIB because it installs the old and new
configuration in the network at the same time. An incremental
update algorithm [18] which makes a trade-off between the
time required and the TCAM needed. It divides the update
into several rounds and completes a part of configuration in
each round.

In SDN, the consistent update has been explored in [19].
The authors establish two criteria of consistent update mecha-
nism: per-packet consistency and per-flow consistency.To im-
plement per-packet consistency, the controller stamps packets
with their configuration version at ingress switches and tests
for the version number in the core network. [7] provides
a network model and the two-phase commit for per-packet
consistency. When packets arrive the network, the egress
switch stamps packets with a version number. In the core of
the network, all rules in switches use the version number as a
match field and affect packets with the same version number.
After packets walk through the network, the egress switch
strips the version number from packets. A weakness of this
mechanism is that during the configuration update, the old and
new rules are both installed in the network, and consume too
much TCAM.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a consistent mechanism based on
the relation graph, which makes a significant improvement
on reducing the rules installed and the update time required.
We define the path dependency relation and the path rejection
relation. Then we analyse the relations between the update
operations and generate the relation graph. Using RG, we can
find a proper order of these operations. The results of our
simulation show that our work makes a significant influence
on reducing the update time required and rule space used.

In the future, we will process the circle in the RG in
serval situations. Efficient circle divide algorithm needs to
be design. Besides, we will test our mechanism under more
real topologies and more complex update process in both
simulation environment and test bed.

VII. ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China under grant No. 61402255, the
Guangdong Natural Science Foundation under grand
No. 2015A030310492, the R&D Program of Shenzhen
under grant No. ZDSYS20140509172959989, No.
JCYJ20150630170146830.

REFERENCES

[1] W. Xia, Y. Wen, C. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Communications Surveys
Tutorials, vol. 17, no. 1, pp. 27–51, 2015.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:

enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

[3] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Communications Maga-
zine, vol. 51, no. 2, pp. 114–119, 2013.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utilization
with software-driven wan,” in Proceedings of ACM SIGCOMM,
Hong Kong, Aug. 2013.

[5] M. Bredel, Z. Bozakov, A. Barczyk, and H. Newman, “Flow-
based load balancing in multipathed layer-2 networks using
OpenFlow and multipath-TCP,” in Proceeding of ACM SIG-
COMM HotSDN, Chicago, USA, Aug. 2014.

[6] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent
updates for software-defined networks: Change you can believe
in!” in Proceedings of ACM Workshop on HotNets, Cambridge,
USA, Nov. 2011.

[7] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker, “Abstractions for network update,” in Proceedings
of ACM SIGCOMM, Felsinki, Finland, Aug. 2012.

[8] P. Peresini, M. Kuzniar, N. Vasic, M. Canini, and D. Kosti,
“OF.CPP: Consistent packet processing for openflow,” in Pro-
ceeding of ACM SIGCOMM HotSDN, Hong Kong, Aug. 2013.

[9] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “Soft-
ware transactional networking: Concurrent and consistent policy
composition,” in Proceeding of ACM SIGCOMM HotSDN,
Hong Kong, Aug. 2013.

[10] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz, “zUpdate: Updating data center networks with zero
loss,” in Proceedings of ACM SIGCOMM, Hong Kong, Aug.
2013.

[11] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer, “Dynamic schedul-
ing of network updates,” in Proceedings of ACM SIGCOMM,
Chicago, USA, Aug. 2014.

[12] B. Lantz, B. Heller, and N. McKeown, “A network in a
laptop: Rapid prototyping for software-defined networks,” in
Proceedings of ACM Workshop on HotNets, Monterey, USA,
Oct. 2010.

[13] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and
R. Smeliansky, “Advanced study of SDN/OpenFlow con-
trollers,” in Proceedings of the 9th Central Eastern European
Software Engineering Conference in Russia, Moscow, Russia,
Oct. 2013.

[14] “The internet topology zoo.” [Online]. Available:
http://topology-zoo.org

[15] “The route views project.” [Online]. Available:
http://www.routeviews.org

[16] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and
G. Wang, “Meridian: an SDN platform for cloud network
services,” IEEE Communications Magazine, vol. 51, no. 2, pp.
120–127, 2013.

[17] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient
congestion during network update in data centers,” in Proceed-
ings of ACM CoNEXT, Sydney, Australia, Dec. 2014.

[18] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent
updates,” in Proceeding of ACM SIGCOMM HotSDN, Hong
Kong, Aug. 2013.

[19] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent
updates for software-defined networks: Change you can believe
in!” in Proceedings of ACM Workshop on HotNets, Cambridge,
USA, Nov. 2011.


