
MSRT: Multi-Source Request and Transmission
in Content-Centric Networks

Qing Li∗, Bin Gan∗,Guangwu Hu∗, Yong Jiang∗, Qingmin Liao∗, Mingwei Xu†
∗ Graduate School at Shenzhen, Tsinghua University, Shenzhen, China

† Tsinghua University, Beijing, China

Abstract—In Content-Centric Networks (CCN), multiple
routers may cache the same content, which makes it possible
to retrieve the content chunks in parallel. In this paper, we
propose Multi-Source Request and Transmission mechanism
(MSRT) for CCN. We develop a MinMax problem to compute
the optimal solution to retrieve all the chunks from multiple
sources in the shortest time. We prove that the problem is NP
complete and thus design a fully polynomial-time approximation
algorithm to solve this problem. However, the previous works
on multipath congestion control cannot be directly employed in
MSRT. Therefore, we then propose the Half eXplicit Congestion
Protocol (HXCP) to control the request/transmission pace in
MSRT. To demonstrate the performance of MSRT, we construct
comprehensive experiments. The results show that 1) our scheme
reduces the content transmission time to at most 80%; 2) our
multipath congestion control scheme HXCP effectively avoids
congestion, improves the throughput and guarantees the fairness
in the multi-source/multipath scenario.

I. INTRODUCTION

The current Internet architecture, designed nearly 40 years

ago, is suitable for the end-to-end communication[1]. How-

ever, with the big success of the Internet, a large number of

innovative applications are arising. Especially in the recent

years, content distribution applications, e.g., video websites,

become the main contributor of traffic in the Internet[2].

However, in such applications, users are more concerned about

the content, rather than the location of the content[3]. At

the same time, the current Internet routers cannot identify

the forwarded content, which leads to multiple redundant

transmissions of the same content in the network and reduces

the network bandwidth utilization.

To solve the problem, a lot of Information Centric Network

(ICN) architectures, such as Content Centric Network (CCN)

[3], COMET[4], PSIRP/PURSUIT[5] and DONA[6], have

been proposed. As one significant ICN architecture, CCN

has attracted much attention academically. CCN shifts the

network communication model from the current host-based

packet delivery to data-driven content delivery by name-

oriented routing and in-network caching. In CCN, a content

object is assigned a unique name and may be divided into

multiple chunks, which can be cached by CCN routers.

With the in-network caching and multiple content reposito-

ries in CCN, multiple routers and repositories may cache the

same content. The multipath nature of CCN holds considerable

promises for improving end-user performance and network

resource utilization. However, the previous works [7–12] fail

to take full advantage of this character.

In this paper, we propose the mechanism of Multi-Source

Request and Transmission (MSRT) to improve the perfor-

mance of CCN. We first design a multi-source request schedul-

ing scheme for end users to quickly retrieve the content by a

point-to-multipoint mode. In our scheme, the Probe packet

is employed to explore the chunk distribution status of the

requested content. Based on the probed results, we develop

a MinMax problem to retrieve data chunks of the content in

the shortest time. We prove that the problem is NP complete.

We thus design an efficient polynomial-time approximation

algorithm to solve this problem.

However, the multi-source transmission model in our

scheme only focuses on improving end-user performance,

which may cause congestion in the network. While the cur-

rent congestion control schemes cannot be directly used in

MSRT, including the traditional TCP-based congestion control

schemes [13, 14] and the explicit congestion control protocols

such as eXplicit Control Protocol (XCP) [15]. Meanwhile, the

current multipath congestion control protocols [16–18] cannot

work efficiently either. Therefore, we propose an efficient

multipath congestion control scheme for MSRT. Our multipath

congestion control scheme is receiver-driven protocol and

involved with explicit router participation. In our design,

the scheme employs an Additive Increase and Multiplicative

Decrease (AIMD) window control method. Specifically, the

scheme performs Additive Increase window control at receiver

side and Multiplicative Decrease window control with the

cooperation of receivers and routers.

To demonstrate the performance of MSRT, we design and

implement a CCN simulator platform. To show the per-

formance of our multipath congestion control scheme, we

evaluate the bandwidth utilization and fairness in different

scenarios. The experiment results have successfully demon-

strated the feasibility of the multi-source request schedul-

ing scheme, which reduces the content transmission time

to at most 80% compared with the traditional scheme in

CCN. Besides, the simulations have confirmed the ability of

our multipath congestion control scheme, which successfully

stabilizes the network and improves the throughput in the

multi-source/multipath environment. When there are multiple

flows in the network, MSRT ensures fairness and provides

10% higher resource utilization than the existing transport

protocols.

The remainder of the paper is organized as follows. Section

II describes background and motivation. Section III proposes

multi-source request scheduling scheme. In Section IV, the

multipath congestion control scheme is presented. Experiment

results on the performance of the MSRT are presented in

Section V. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

CCN operates using two main network primitives: Interest
and Data, both identified by the content name. A user requests

the content by the Interest message, which is forwarded

towards the available content replica according to the name of

the requested content. The requested content is then delivered

back to the requester by the Data message, following the

reverse path. There are three core components in the CCN

router: Forwarding Information Base (FIB), Pending Interest

Table (PIT), and Content Store (CS). FIB is used to forward

the Interest message to the potential content source(s). PIT is

used to mark where the request comes. CS is used to cache

the responded content.

Some works have been devoted to complete CCN architec-

ture, including CCN routing[7], forwarding[8], and caching

[9–12]. Although these works improve the efficiency and

stability of CCN, they make the transmission model of CCN

become multipoint-to-multipoint. For an end user, the re-

quest model for content becomes point-to-multipoint. Thus,

a multi-source request scheme is required to improve the

end-user performance. Though multi-source mobile streaming

(MS2)[19] is proposed to solve the bottleneck issue of the

Internet backbone with simultaneous multiple low streaming

rate transmissions to mobile users, it does not consider re-

dundant transmissions of popular contents. In MM3C[20], an

MS2 architecture integrated with CCN for mobile multimedia

streaming is proposed. However it is designed to reduce

redundant transmissions in the network without considering

the end-user performance. Thus, designing a multi-source

request scheduling scheme for the end user to retrieve content

in the shortest time is significantly important.

The point-to-multipoint transmission model for the end user

in CCN makes the traditional congestion control protocols

infeasible, including the traditional TCP-based congestion

control protocols and the explicit congestion control schemes.

The reasons can be concluded as follows:

• Out-of-order delivery cannot be used as an indication of

network congestion. A packet might arrive out of order

only because the content source of this packet is further

from the requester. The retransmission timeout estimation

[13] does not span multiple data sources.

• Feedback is not accurate in explicit congestion control

protocols. When the requested Data packet arrives, mul-

tiple copies of the Data will be sent from the faces that

Interests arrived on. If the Data packet carries a feedback,

every receiver will uniformly response to it, which is

unreasonable as receivers are different.

There are also some congestion control protocols designed

specifically for CCN. However, they generally fail to address

the fact that the chunks may originate from different sources.

ICP[21] and ICTP[22] are TCP-based congestion control pro-

tocols for CCN. They set the Interest retransmission timer

according to the RTT of received Data, which cannot be used

as multiple sources exist in MSRT.

There are also a lot of works on multipath congestion

control schemes in the traditional network. mTCP [16],

MPTCP[17], [18]are transport protocols implemented based

on TCP in traditional network. Like most of multipath trans-

port proposals, [18] defines uncoupled congestion control on

each path, implemented through separate and independently

managed connections (subflows). Each subflow maintains a

congestion window as in TCP and perform its own path

congestion control. However, the main drawback of uncou-

pled multipath congestion control consists in inefficient/unfair

control of shared bottlenecks.

Contug[23] maintains an independent retransmission time-

out for each data source. However, it assumes that before the

start of transmission, the receiver has to know the location of

each data chunk, and the position will not be changed during

transmission, which is generally impossible in CCN. CCTCP

[1] is a scalable alternative for the existing proposals. It takes

the multiple sources into account and keeps an individual

timeout for each expected source. RAAQM [24] performs a

per-route control of bottleneck queues along the paths at the

receiver, which realizes a receiver-based window congestion

control and RTT monitoring on each route distinguishing

packets via a route label. Further proposals such as HoBHIS

[25] and HR-ICP [26], require each CCN router to keep per-

flow state, which strongly affects scalability and deployment

in the core Internet routers.

Therefore, designing a novel and efficient multipath conges-

tion control scheme for CCN to cooperate with multi-source

request scheduling scheme is also a significant challenge.

III. DESIGN OF MULTI-SOURCE REQUEST AND

TRANSMISSION MECHANISM

A. CCN Extension

In this section, we describe how we extend the CCN

architecture to support MSRT.

1) Naming Strategy: We extend the content name to

the form of P:L, as in DONA [6]. P is the name of a

content repository (the original content server). L is the

globally unique identifier (label) of the content. Therefore,

a content name is hierarchically structured as Reposito-
ryA:/youtube.com/videos/a.mpg. An Interest packet with the

name of RepositoryA:/youtube.com/videos/a.mpg/01 should be

forwarded to the content repository of RepositoryA.

The name can also be set as *:L, where ∗ means any repos-

itory of L. An Interest packet with the name of *:L implies

that the Interest should be forwarded to all the repositories

with the content of L.

2) Packet Type: We introduce two new packet types: Probe
and Information. Both of them are identified by the content

name as the same as Interest and Data. A user explores the

chunk distribution status by broadcasting a Probe packet over

the available faces. Each CCN node (a server or a CCN router)

R with the corresponding data chunks will send an Information
packet back to the prober. The Information packet contains the

chunk distribution status in R’s cache or store. Compared with

the Interest, the name of the Probe should always be set as *:L,

implying the Probe should be forwarded to all the directions to

search content L. The Information packet is always identified

by P:L. When R is a CCN router, P is set according to the

corresponding entry in the FIB of R. When R is a content

repository, P is set to be R.

Besides, we extend the Information and Data packet header

with a field of FN (Field of Node type), identifying whether

the responding CCN node R is a CCN router or a repository.

The four extended packets, Interest, Data, Probe and Infor-
mation are shown in Figure 1.

3) FIB Extension: As shown in Figure 2, we extend the

FIB entry with a type field of FR (Field of Repository), which

helps to forward the Interest and Probe to content repositories.

The content repositories should pro-actively advertise their

existence via a CCN broadcast. For example, Repository RA

has the content of L (/youtbe.com/video/a.mpg). RA advertises

the information of RA:L in the CCN network via a CCN

broadcast. RB does the same thing. As shown in Figure

2, a CCN router maintains the two entries of RA:L and

RB :L in the FIB. Therefore, the CCN router can forward

the corresponding Interest and Probe packets accordingly.

Specially, the router should forward Probe packets with name

∗:L to all available faces towards the content L in the FIB.

P:L(Content name)

FN(node identifier)
Chunks distribution status

P:L(Content name)

FN(node identifier)

Data chunks

Data

Information
P:L(Content name)

…
…

P:L(Content name)

…

…

Interest

Probe

Figure 1. The four types of packets in MSRT

FT(Type) Lifetime Name Requesting face
Probe 10 youtube.com/videos/a.mpg 0
Interest 5 youtube.com/videos/a.mpg/01 0

FR(Repository) Name Forwarding face
RA youtube.com/videos/a.mpg 0
RB youtube.com/videos/a.mpg 1

Forwarding Information Base (FIB)

Pending Interest Table (PIT)

Figure 2. FIB and PIT in MSRT

4) PIT Extension: As shown in Figure 2, we extend the

PIT entry with a type field FT (Field of Type), which helps to

distinguish Interest and Probe. When a CCN router receives

a Probe for a content not in its cache, it forwards the Probe
according to the FIB. When the corresponding Information

packets travel back, they are forwarded according to the PIT.

The PIT entry with FT of “Probe” is different from the entry

with FT of “Interest”. The “Probe” entry in the PIT will not

be deleted with the reception of the Information packet. It

will only be deleted when it is expired. Thus, the receiver

can collect multiple Information packets from different data

sources with one Probe packet.

B. Chunk Distribution Status Explore Method

1) CCN Router and Repository Functions: When a CCN

router receives a Probe for a content not in its cache, it

forwards the Probe according to the FIB and installs a PIT

entry for the Probe packet. If the router has the content in its

cache, it extracts repository field FR from the corresponding

FIB entry and generates an Information packet of P:L where

the P is set as to be FR. The FN field of the Information
packet is set to be the CCN router.

When a content repository receives a Probe, it generates an

Information packet with P:L where P is the repository itself.

In this case, the FN field of the Information packet is also set

to be the repository itself. The Information packet is forwarded

back to the request by the PIT entries along the path of the

Probe packet. The PIT entry whose type field FT is “Probe”

will only be deleted when it is expired.

2) User Functions: In CDSEM, before requesting the con-

tent, the user first sends a Probe packet with the name of *:L
to explore the corresponding chunk distribution status.

When the corresponding Information packets arrive, the

user extracts the chunk distribution status of the content in

each data source. The Information packet records the content

repository and the node identifier FN of the data source.

Then the user sends the Interests to get different chunks

from different content sources. Each communication between

the user and data source is controlled by a separate sliding

window. In CDSEM, we use FN to identify different sliding

windows. After Data packets arrive, we update the round trip

time (RTT) of the corresponding data source.

An example of CDSEM is shown in Figure 3 and Figure 4.

There is a content file that is divided into ten chunks. On the

path from the user to content repositories, there are some data

chunks cached in routers (as shown in Figure 3). The specific

process of CDSEM is shown in Figure 4.

It is necessary to mention that the chunk distribution status

of the content dynamically changes, influenced by caching

policies, changing traffic, and cache sizes. Therefore, we peri-

odically send the Probe to explore the latest chunk distribution

status of the content.

C. Multi-Source Request Schedule

In this section, we formalize the problem of the multi-source

request schedule as a MinMax problem.

We first take the topology and the content distribution of

Figure 3 as an example. A content file contains 10 equal-

size data chunks. There are five data sources S1, S2, S3, R1

and R2 for the content. S1 has data chunks {1, 3, 5}, S2 has

data chunks {2, 4, 7}, S3 has data chunks {2, 6, 8}, and R1

Figure 3. A topology of chunk distribution status

Figure 4. An example for CDSEM

and R2 have whole content. The RTTs from the user to each

data source are respectively rtt1, rtt2, rtt3, rtt4 and rtt5.

The window sizes for the data sources are respectively win1,

win2, win3, win4 and win5. The problem is how to retrieve

the whole content from the five data sources in the shortest

time. The more general case could be modelled as a MinMax

problem.

Based on the results of CDSEM, we obtain window sizes,

RTT values and chunk distribution status of all the data

sources. We accordingly develop a MinMax problem to re-

trieve the content in the shortest time. We prove it to be

NP-complete. Then, we design a heuristic algorithm and a

fully polynomial time approximation algorithm to solve the

problem.

1) Optimal Content Retrieval Problem: A content C is

composed of a number of data chunks with the same size

M . C={c1, c2, ... cp}, where ci is a chunk and p is number of

chunks in C. There are a set of content sources S={s1, s2, ...

sq} where sk is a content source and q is the source number.

Each source sk has a corresponding RTT rttk and a window

size wink to the end user. sk also denotes the set of chunks

it stores. For example, sk={ck1, ck2, ...ckn} means the content

source sk has the chunks, ck1, ck2, ... ckn in its storage.

An available retrieval solution is to find a set of chunk group

CG={cg1, cg2, ... cgq}, where cgi ⊆ si, ∪1≤i≤qcgi = C and

cgi ∩ cgj
.
= ∅ (∀i �= j). cgi means the user retrieves the chunks

in cgi from si. Let xij denote whether ci is retrieved from sj
in the solution. If ci ∈ cgj , xij = 1; else, xij = 0. T =

max{rttj +
M×rttj
winj

∑p
i=1 xij , j ∈ [1, 2, ..., q]} is the total

retrieval time for the retrieval solution. Our objective is to find

an optimal available solution with the shortest total retrieval

time. The optimal content retrieval problem is formalized

as follows.

T = min maxj∈[1,2,...,q]{rttj + M × rttj
winj

p∑
i=1

xij , }

s.t :

q∑
j=1

xij = 1, i ∈ [1, 2, ..., p] (1)

xij =

{
1, ci ∈ cgj and ci ∈ sj
0, otherwise

The constraint
∑q

j=1 xij = 1 indicates that data chunk ci
only belongs to one chunk group. If data chunk ci belongs

to chunk group cgj , xij = 1, otherwise xij = 0. An optimal

solution of this problem corresponds to an optimal way to

retrieve the content in the shortest time.

Theorem 1. The optimal content retrieval problem is NP-
complete.

We prove Theorem 1 by a reduction from the 3-dimensional

matching problem, which is known to be NP-complete:

Instance 1. Disjoint sets A = {a1, ..., an}, B = {b1, ..., bn},
C = {c1, ..., cn} and a family H = {T1, ..., Tm} of triples
with | Ti ∩A |=| Ti ∩B |=| Ti ∩ C |=1 for i=1,...,m.

Question 1. Does H contain a matching, i.e., a subfamily H’
for which |H ′| = n and ∪Ti∈H′Ti=A ∪B ∪ C.

Proof of Theorem 1. Given an instance of the above 3-

dimensional matching problem, we construct an instance of

the multi-source request problem with m data sources and

3n + l(m − n) data chunks when m > n, l > 1 and m,n, l
are integers. We define the 3n chunks which in A ∪ B ∪ C
as element chunk and the l(m − n) chunks which is not in

A∪B ∪C as dummy chunk. Data source si caches or stores

all the l(m−n) dummy chunks and all the 3n element chunks

for i = 1, ..., n. And the other m − n data sources cache or

store all the dummy chunks. Data sources si for i = 1, ..., n
can transmit each chunk in one time unit and data sources

for i = n + 1, ...,m can transmit each chunk in 3
l time unit.

It is quite simple to show that there is a minimal time at

most 3 for the multi-source request problem if and only if

there is a 3-dimensional matching. In the schedule, we request

element chunks ax, by and cz which correspond to the triple

Ti = {ax, by, cz} from data source si for i = 1, ..., n, and

request all the l(m − n) dummy chunks from data sources

si for i = n + 1, ...,m for each data source transmits l
dummy chunks. Thus, a 3-Dimensional matching problem can

be reduced to a multi-source request problem where rttj = 1
for j = 1, ..., n, rttj =

3
l for j = n+ 1, ...,m, and winj=M

for j = 1, ...,m.

2) Minimum rEtrieval Time Algorithm: In this section, we

propose a heuristic algorithm which is the Minimum rEtrieval

Time Algorithm (META) to solve the MinMax problem de-

scribed in Equation 1. The main idea of the algorithm META

is to calculate the retrieval time for the data chunks one by

one sequentially. In each round, we choose the data source

with the minimum retrieval time for the current chunk.

The procedure of META is described as follows. We set

up a data structure named Retrieval Time (RT) which is a

1 × q matrix and records the current retrieval time at each

data source. In stage i for data chunk ci for i = 1, ..., p, we

calculate the expected retrieval time for the data chunk ci when

it is assigned to each available data sources, and choose the

data source which has the minimum expected retrieval time

to request and send the Interest to it. Then, we update the

retrieval time of the chosen data source in RT . The pseudo-

code of the META is shown in Algorithm 1. In this algorithm,

in each stage i for the data chunk ci, we choose to request it

from to the available data source with the minimum retrieval

time. Therefore, the time complexity of META is O(pq).

Algorithm 1 Minimum rEtrieval Time Algorithm

Input: Data chunks C={c1, c2, ... cp}, Data sources sj , j ∈
[1, 2, ..., q], stores data chunks sj={cj1, cj2, ... cjn} and each
data source sj , has a RTT rttj and a window size winj ;

Output: CG={cg1, cg2, ... cgq} and the minimal time Topt.
1: Initialize the RT = (rtt1, rtt2, ..., rttq);
2: for i = 1 to p do
3: min = +∞, index = 0
4: for j = 1 to q do
5: if ci ∈ sj and min > RT [j] +

M×rttj
winj

then
6: min = RT [j] +

M×rttj
winj

, index = j;

7: end if
8: end for
9: cgindex = cgindex

⋃
ci;

10: end for
11: Topt = maxj∈[1,q]RT [j]);
12: Return Topt and CG;

3) Binary Search based on Hungarian Algorithm: In this

section, we propose another Binary Search based on Hungarian

Algorithm (BSHA) to get a better solution for the optimal

content retrieval problem. BSHA can get a better solution

than META and the time complexity is still polynomial,

O(p3log2(1/ε)), where p is the number of data chunks and ε
is a constant.

Binary search is known as a half-interval search algorithm.

It halves the feasible region to check with each iteration. Lo-

cating an item (or determining its absence) takes logarithmic

time.Hungarian algorithm is a classical algorithm used to solve

the maximum bipartite graph matching problem in polynomial

time. In this section, we solve the optimal content retrieval

problem by Binary Search based on Hungarian Algorithm

(BSHA).

In each step of the BSHA, the algorithm has a feasible

interval [a, b] where the optimal retrieval time Topt is in the

interval, and a, b are constants. At the beginning of BSHA, we

initialize a = 0 and b as the time of a max feasible solution

Tfea to retrieve all the chunks. Then, we start the binary

search to half the interval by finding a feasible solution for

the retrieval time of (a + b)/2. If we find a feasible solution

for it, we set b to (a+ b)/2, otherwise we set a to (a+ b)/2.

The optimal retrieval time is still in the interval. We employ

the Hungarian algorithm to compute whether there is a feasible

solution in a specific time or not.

The process of finding a feasible solution for a specific time

can be described as follows: first, we can request at most

dj =
winj×(T−rttj)
M×rttj

� data chunks from each data source

sj , j = 1, ..., q. Thus we allocate dj resource units to data

source sj . We have
∑q

j=1 dj resource units in all. Then, we

construct a bipartite graph G = (V,E) where the vertices V
can be divided into two disjoint sets A and B where A is

the set of data chunks and B is the set of resource units. The

set E denotes the edges between data chunks and resource

units, indicating that the resource units can be allocated to

the corresponding data chunks. Computing whether there is a

feasible solution for a specific time or not is equivalent to find

a max matching whose edges number is equal to the number

of data chunks for the bipartite graph. Hungarian algorithm

is a very effective algorithm to seek the max matching. The

algorithm BSHA would end with a constant ε > (b− a) and

we choose b as the approximate result of the optimal retrieval

time and the max matching for the bipartite graph as the final

chunk groups.

Algorithm 2 Binary Search based on Hungarian Algorithm

Input: C={c1, c2, ...cp}, sj={cj1, cj2, ...cjn}, j ∈ [1, 2, ..., q]
Output: CG={cg1, cg2, ... cgq} and the minimal time Topt.

1: Initialize a = 0, b (a random feasible time), Constant ε;
2: while ε < b− a do
3: T = (b+ a)/2;
4: for j=1 to q do
5: dj = �winj×(T−rttj)

M×rttj
�;

6: RUj={rsjk|k ∈ [1, dj]};
7: end for
8: Construct a bipartite graph G = (A,B,E), A =

{c1, c2, ..., cp}, B = {RU1, RU2, ..., RUq}. If there is an
edge between node ci and node rujk, (k ∈ [1, dj]) for
resource units of data source sj , e[ci][rujk] = 1.

9: Judge whether there is a feasible solution for T using Hun-
garian Algorithm.

10: if there is feasible solution array pred then
11: b = (b+ a)/2;
12: else
13: a = (b+ a)/2;
14: end if
15: end while
16: Construct CG according to pred.
17: for j = 1 to q do
18: for k = 1 to dj do
19: cgj = cgj

⋃
cpred[rujk];

20: end for
21: end for
22: Return Topt=b and CG;

Algorithm 3 Hungarian Algorithm

1: Initialize all = 0.
2: for i=1 to p do
3: unlabel all nodes in B.
4: set pred[rujk]=0 for j ∈ [1,m], k ∈ [1, dj].
5: if find(i) then
6: all=all+1.
7: end if
8: end for
9: if all < p then

10: there is a feasible solution for T .
11: else
12: there is not a feasible solution for T .
13: end if
14: Return array pred.
15: Function find(x)
16: for j = 1 to q do
17: for k = 1 to dj do
18: if e[cx][rujk] == 1 and rujk is unlabeled then
19: label node rujk

20: if pred[rujk]==0 or find(pred[rujk]) then
21: pred[rujk]=x.
22: return true
23: end if
24: end if
25: end for
26: end for
27: return false
28: end Function

IV. MULTI-PATH CONGESTION CONTROL

The multi-source transmission model in MSRT makes the

method of traditional congestion control invalid. Therefore, we

propose Half eXplicit Congestion Control Protocol (HXCP),

which is receiver-driven and involved with explicit router

participation protocol.

A. Interest Control Overview in HXCP

Data are requested via Interest (one Interest per Data
packet) in the order of the multi-source request scheduling,

according to a window-based Additive Increase Multiplicative

Decrease (AIMD) approach. As shown in Figure 5, in our

design, the AIMD controller is separated into two parts:

additive-increase Interest window controller in the receiver

and multiplicative-decrease Interest window controller in CCN

routers. CCN routers send feedback messages to the receiver

and the receiver adjusts its window size accordingly.

Now we give an overview of HXCP. The congestion win-

dow, win, is kept at the user side and defines the maximum

bytes of un-responded Interests the user is allowed to send

in a round trip time. win is increased by η
win upon each

normal Data packet reception whose feedback is positives.

This corresponds to an increment of η (bytes of one Interest
by default) each time a complete window of Interest is

acknowledged by Data reception.

In HXCP, the CCN router can also send feedbacks to the

receiver, as it is one end of the communication. Receivers

maintain their round trip times, window sizes, and inter-

Interest times. They share these information with CCN routers

via a congestion header in packets. The CCN Routers monitor

the input packets rate to each of their output queues. Based

on the difference between the link bandwidth and its input

packets rate, the CCN router determines whether to decrease

the window sizes of the corresponding flows. The router

achieves this by annotating the congestion header of Data
packets. Feedback is divided between flows based on their

actual throughput and RTT so that the system guarantees

fairness. A more congested CCN router later in the path

can overwrite the feedback. When the feedback reaches the

receiver, the receiver updates its window size win accordingly.

B. Function Description of HXCP

1) The Congestion Header: Each HXCP packet carries a

congestion header < win, rtt, feedback >, which is used to

transport the flow states and feedbacks between CCN routers

and the receiver. The field win is the receiver’s current window

size to the data source and the rtt is the round trip time from

the receiver to the data source. These parameters are set by

the user and never modified during transmission. As for the

feedback field, CCN routers along the path modify this field

to directly control the congestion window in receiver.

2) Functions of Receivers: The receiver is responsible for

maintaining three parameters for each data source in the

congestion header. Upon Data arrival, the receiver checks the

congestion feedback in Data packet. If it is an increasing

feedback, the receiver increases win by η
win . Otherwise, the

receiver adjusts the window size accordingly. In addition, the

receiver updates the round trip time that is in correspondence

with the data source whose identifier is the same as the node

identifier field in the Data packet header.

3) Functions of CCN Routers: This part of content is the

same as the router functions in eXplicit Congestion Control

Protocol. The difference between them is that the CCN router

may be the data source. Thus, the CCN router may match the

Interest and respond it with the Data packet. The CCN router

is also responsible for coping the congestion header in the

Interest into the Data packet. The CCN router calculates and

sends the feedback to the receiver by annotating the congestion

header of Data packets.

V. EVALUATION AND ANALYSIS

In this section, we evaluate MSRT by comprehensive ex-

periments. Our evaluation focuses on the capacity of multi-

source request mechanism and multi-path congestion control

mechanism in CCN. We evaluate the makespan (the content

retrieval time) of multi-source request mechanism with our

two different algorithms META and BSHA, compared with

the original approach in CCN. We also evaluate the execution

time of two algorithms META and BSHA.

Additionally, we evaluate HXCP’s capability in stabilizing

network condition. We conduct detailed experiments on sev-

eral simplified but representative network topologies and com-

pare HXCP with existing CCN transport protocol RAAQM

[24] and MPTCP [27].

Data repository/
Content store

HXCP Content Source HXCP Router HXCP Receiver

Content
store

Pending Interest Table

Forwarding Information Base
MSRT

scheduler

separated
window control
for each source

AI
controller

MD
controllerChunk Selector Data buffer

Interest
buffer

Interest Data Data Chunk Internal Interaction

MD
Feedback
dealer

Figure 5. Functional modules of HXCP content source, router and receiver.

Our CCN simulation platform provides a network environ-

ment to support CCN protocol evaluation. The platform runs

at two servers of Huawei RH2288 with the cpu of E5-2600

v2, the memory of 8GB DDR3., as shown in Figure 6.

Figure 6. The servers of simulation platform.

A. Multi-source Request Scheme Simulation

We first evaluate mechanism of MSRT in a four-layer binary

tree. The number of data sources is set to be four or eight.

The number of chunks is set from 100 to 900.

Figure 7. An experiment topology for multi-source request scheduling scheme
with CDSEM

1) Makespan: We quantify the makespan of the multi-

source mechanism with META and multi-source mechanism

with BSHA, comparing with retrieving content from a single

source. We set up a non-cooperative receiver that generates

Interests at a constant Interest rate (CIR), even when the router

has sent congestion feedback message. We set CIR as 200

Interests per second in each run, requesting a content file. As

shown in Figure 8, the makespan with multi-source request

is better than retrieving content without multi-source request.

When the chunk number increases, the makespan performance

improves significantly. The reason is that the probe is more

worthwhile when the content is larger. there is an extra time to

explore the chunk distribution status of content to be requested.

When the number of the data chunks is large, the transmission

time reduces greatly and the time overhead of CDSEM can be

covered or even ignored.
As for the multi-source request with META and BSHA, the

experiment results show that BSHA can obtain better results

for multi-source request.

2 4 6 8
0

0.5

1

1.5

2

2.5

3x 104

x100,Number of chunks

m
ak

es
pa

n(
10

m
s)

4 data sources

Without MSRT
MSRT with BSHA
MSRT with META

2 4 6 8
0

0.5

1

1.5

2

2.5

3x 104

x100,Number of chunks

m
ak

es
pa

n(
10

m
s)

8 data sources

Without MSRT
MSRT with BSHA
MSRT with META

Figure 8. Makespan of MSRT (with BSHA or META) compared with single-
source request without MSRT

2 4 6 8
-0.5

0

0.5

1

m
ak

es
pa

n
im

pr
ov

em
en

t

x100,Number of chunks

4 data sources

MSRT with BSHA
MSRT with META

2 4 6 8
-0.5

0

0.5

1

m
ak

es
pa

n
im

pr
ov

em
en

t

x100,Number of chunks

8 data sources

MSRT with BSHA
MSRT with META

Figure 9. Makespan improvement of MSRT

2) Algorithm Execution Time: In this section, we present

the experiment results of Algorithm META and BSHA with

4/8 data sources and different number of data chunks (100,

200, 400, 800). The results are shown in Table I. The experi-

ment results confirm that the execution time of META is much

smaller than BSHA, which is consistent with our analysis.

Besides, when the problem scale increases, the execution time

of BSHA increases sharply.

Table I
ALGORITHM EXECUTION TIME (MS)

Source x Chunk META BSHA S x C META BSHA
4x100 1.45 21.32 8x100 3.85 93.73
4x200 3.29 87.92 8x200 7.84 204.75
4x400 7.45 475.84 8x400 17.31 1776.72
4x800 16.48 5042.75 8x800 22.65 5423.26

The results of makespan and execution time of MSRT with

META and BSHA reveal that we should choose different algo-

rithms depending on different network scenarios. Specifically,

the META algorithm should be chosen when the receiver’s

computing capacity is relatively low, the requested content is

larger with more data chunks and stored in more data sources.

Otherwise, BSHA should be chosen for MSRT.

B. Multi-path Congestion Control Scheme Simulation

1) A Single-Receiver, Two-Source Benchmark Scenario:
We conduct several benchmark experiments using a four-node

topology, shown in Figure 10. Here, the receiver node A is

connected to the router B via a long Internet connection (with

100Mbps bandwidth and 50ms latency), and the router is

connected to the sources C and D via a local Internet access

(with a 40Mbps bandwidth and a 5ms latency). We set the

outbound data queue size of the router to be 3000KB. We

consider a 320MB content file with 10,000 chunks in total.

Each chunk is 32KB in size, stored in source C and source D.

First, we compare HXCP with existing protocols: RAAQM

and MPTCP in Figure 11, which shows how the receiver

window size and the transient receiving data rate change over

time. The results show that HXCP significantly outperforms

RAAQM and has the same throughput as MPTCP. However,

HXCP is much smoother at receiver side, with an average

size of 44.43; the receiving data rate is much higher (also

smoother), with 78.52Mbps at the steady state. The throughput

of HXCP is 8.6% and 110.2% higher than that of MPTCP and

RAAQM respectively.

Figure 10. A topology with two sources and one requester.

0 10 20 30 40 50
0

20

40

60

80

time(s)

w
in

do
w

 si
ze

MPTCP
RAAQM
HXCP

(a) Receiver window size

0 10 20 30 40 50
0

20

40

60

80

time(s)

da
ta

 ra
te

(M
bp

s)

MPTCP
RAAQM
HXCP

(b) Receiving data rate

Figure 11. The receiver window size and receiving rate.

C. A Multi-Flow Scenario

We further evaluate how HXCP behaves when multiple

flows exist. We conduct the experiments on the topology in

Figure 12, which consists of two receivers (A and B). These

two receivers requesting different content files f1 and f2
resulting in two flows in the topology. File f1 is hosted by E,

and f2 is hosted by F and G.

Figure 12. Multiple flow topology where A requests file f1 from source E
and B requests file f2 from source F and source G.

1) Fairness between the Flows: First, we compare HXCP

with existing protocols: RAAQM, MPTCP. We will show that

HXCP is fair in sharing network resource in CCN. We show

the performance of the three protocols when adapting to the

number of flows in the network. For this purpose, in the

topology in Figure 12, we have receiver A requests content

file f1 from the source E and receiver B requests content file

f2 from source F and source G. A starts its request at time

0 and stops at time 100 while B starts at time 20. Figures

13(a)-(c) show the results of the receiver window size and

0 20 40 60 80 100 120
0

20

40

60

80

100

120

time(s)

w
in

do
w

 si
ze

A
B

(a) Receiver window size for RAAQM

0 20 40 60 80 100 120
0

20

40

60

80

100

120

time(s)

w
in

do
w

 si
ze

A
B

(b) Receiver window for MPTCP

0 20 40 60 80 100 120
0

20

40

60

80

100

120

time(s)

w
in

do
w

 si
ze

A
B

(c) Receiver window size for HXCP

Figure 13. The receiver window size of RAAQM, MPTCP and HXCP.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

time(s)

da
ta

 ra
te

(M
bp

s)

A
B

(a) Receiving data rate for RAAQM

0 20 40 60 80 100 120
0

10

20

30

40

50

60

time(s)

da
ta

 ra
te

(M
bp

s)

A
B

(b) Receiving data rate for MPTCP

0 20 40 60 80 100 120
0

10

20

30

40

50

60

time(s)

da
ta

 ra
te

(M
bp

s)

A
B

(c) Receiving data rate for HXCP

Figure 14. Receiving rates of RAAQM, MPTCP and HXCP.

Figures 14(a)-(c) show the results of receiving data rate of

each receiver.

Table II summarizes the throughput of two receivers under

different schemes during the period when both flows are active.

Table II
THROUGHPUT IN MULTI-FLOW SCENARIO (Mbps).

Protocol Throughput(A) Throughput(B) Total
RAAQM 20.53 20.53 41.06
MPTCP 13.76 26.44 41.20
HXCP 22.52 22. 52 45.04

Before B starts, there is only one flow, initiated by A, and as

a result, this flow owns the resources exclusively. The results

show that HXCP outperforms the RAAQM and MPTCP in

throughput. Specifically ,the throughput of HXCP for receiver

A is about 45.53Mbps at the steady state and is 11% higher

than that of RAAQM and MPTCP. Additionally, the window

of the HXCP is much smoother than RAAQM and MPTCP,

which is consistent with the results in the single-receiver,

two-source benchmark scenario. RAAQM and MPTCP have

similar results with each other because there is only one

receiver and one source.

After B starts there is two flows, and the two flows shares

the resources. The results reveal that HXCP and RAAQM can

share the bandwidth for the two receivers in fair where each

of the receiver gets almost the same data rate. However, the

receiving data rate of HXCP is a little higher (also smoother),

at the steady state than that of RAAQM. And the results also

indicate the unfairness of MPTCP where the receiving data

rate of B is about two times of A.

The inferior performance of RAAQM and MPTCP can be

explained below. In RAAQM, it does not exploit the multi

source request for receiver B which makes that it treats

receiver A and B equally. In MPTCP,it makes use of the two

path for receiver B and one path for receiver A which makes

it to allocate different bandwidth for receiver A and B.

After A stops, there is only one flow that has two sources.

The results are very similar to the results of single receiver

and two sources scenario shown in Figures 11(a)-(b).

VI. CONCLUSION

With the in-network cache and multiple repositories in

CCN, the same content may be cached or stored at multiple

locations, which makes it possible to retrieve content chunks

in parallel. In this paper, we present the Multi-Source Request

and Transmission (MSRT) mechanism for end users to retrieve

content in the shortest time. In MSRT, the Probe packet

is employed to explore the chunk distribution status of the

content to be requested. Based on the probed results, we

formalize an optimization problem to compute the optimal

solution to retrieve data chunks in the shortest time. We proved

the problem to be NP complete and provide the efficient

approximation algorithm.

The existing multi-source request scheduling mechanism

makes the previous multipath congestion protocols invalid,

Therefore, we propose our own new and efficient multipath

congestion control mechanism HXCP to cooperate with multi-

source request scheme of MSRT. HXCP is receiver-driven

and involved with explicit router participation, which performs

separated AIMD window control for each data source.

VII. ACKNOWLEDGEMENT

This work is supported by the National Natural Science

Foundation of China under grant No. 61402255, the R&D Pro-

gram of Shenzhen under grant No. JCYJ20150630170146830,

No. ZDSYS20140509172959989.

REFERENCES

[1] L. Saino, C. Cocora, and G. Pavlou, “Cctcp: A scalable

receiver-driven congestion control protocol for content

centric networking,” in Proceedings of of ICC, Budapest,

Hungary, Jun. 2013.

[2] C. V. N. I. Cisco, “Global mobile data traffic forecast

update, 2013–2018,” white paper, 2014.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,

N. H. Briggs, and R. L. Braynard, “Networking named

content,” in Proceedings of CoNEXT, Rome, Italy, Dec.

2009.

[4] W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang,

G. G. De Blas, F. J. Ramon-Salguero, L. Liang, S. Spirou,

A. Beben et al., “Curling: Content-ubiquitous resolution

and delivery infrastructure for next-generation services,”

IEEE Communications Magazine, vol. 49, no. 3, pp. 112–

120, 2011.

[5] N. Fotiou, D. Trossen, and G. C. Polyzos, “Illustrating a

publish-subscribe internet architecture,” Telecommunica-
tion Systems, vol. 51, no. 4, pp. 233–245, 2012.

[6] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,

K. H. Kim, S. Shenker, and I. Stoica, “A data-oriented

(and beyond) network architecture,” in Proceedings of
SIGCOMM, Kyoto, Japan, Aug. 2007.

[7] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang,

L. Zhang, and L. Wang, “NLSR: Named-data link state

routing protocol,” in Proceedings of ACM SIGCOMM
Workshop on ICN, Hong Kong, Aug. 2013.

[8] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang,

and L. Zhang, “A case for stateful forwarding plane,”

Comput. Commun., vol. 36, no. 7, pp. 779–791, Apr.

2013.

[9] S. Guo, H. Xie, and G. Shi, “Collaborative forwarding

and caching in content centric networks,” in Proceedings
of IFIP NETWORKING, Prague, Czech Republic, May

2012.

[10] Z. Ming, M. Xu, and D. Wang, “Age-based cooperative

caching in information-centric networking,” in Proceed-
ings of ICCCN, Shanghai, China, Aug. 2014.

[11] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-

network caching for information-centric networks,” in

Proceedings of ACM SIGCOMM Workshop, Helsinki,

Finland, Aug. 2012.

[12] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and

G. Pavlou, “Modelling and evaluation of ccn-caching

trees,” in Proceedings of IFIP NETWORKING, Valencia,

Spain, May 2011.

[13] S. Floyd and T. Henderson, “The newreno modification

to tcp’s fast recovery algorithm,” IETF Draft, 1999.

[14] V. Jacobson, “Congestion avoidance and control,” in

Proceedings of ACM SIGCOMM, Stanford, USA, Aug.

1988.

[15] D. Katabi, “Decoupling congestion control and band-

width allocation policy with application to high

bandwidth-delay product networks,” Ph.D. dissertation,

Massachusetts Institute of Technology, 2003.

[16] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and

R. Wang, “A transport layer approach for improving

end-to-end performance and robustness using redundant

paths,” in Proceedings of ATEC, Boston, USA, Mar.

2004.

[17] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley,

“Design, implementation and evaluation of congestion

control for multipath tcp,” in Proceedings of NSDI,
Boston, USA, Mar. 2011.

[18] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and

D. Towsley, “Multi-path tcp: A joint congestion control

and routing scheme to exploit path diversity in the

internet,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp.

1260–1271, 2006.

[19] T. Taleb and K. Hashimoto, “MS2: A new real-

time multi-source mobile-streaming architecture,” IEEE
Transactions on Broadcasting, vol. 57, no. 3, pp. 662–

673, 2011.

[20] D. O. Mau, T. Taleb, and M. Chen, “MM3C: Multi-

source mobile streaming in cache-enabled content-centric

networks,” in Proceedings of GLOBECOM, San Diego,

USA, Dec. 2013.

[21] G. Carofiglio, M. Gallo, and L. Muscariello, “Icp: De-

sign and evaluation of an interest control protocol for

content-centric networking,” in Proceedings of Computer
Communications Workshops (INFOCOM WKSHPS), Or-

lando,USA, Apr. 2012.

[22] S. Salsano, A. Detti, M. Cancellieri, M. Pomposini,

and N. Blefari-Melazzi, “Transport-layer issues in in-

formation centric networks,” in Proceedings of ACM
SIGCOMM Workshop on ICN, Helsinki, Finland, Aug.

2012.

[23] S. Arianfar, P. Nikander, L. Eggert, and J. Ott, “Contug:

A receiver-driven transport protocol for content-centric

networks,” in Proceedings of ICNP, Kyoto, Japan, Oct.

2010.

[24] G. Carofiglio, M. Gallo, L. Muscariello, and M. Pa-

pali, “Multipath congestion control in content-centric

networks,” in Proceedings of Computer Communications
Workshops (INFOCOM WKSHPS), Turin, Italy, Apr.

2013.

[25] N. Rozhnova and S. Fdida, “An effective hop-by-hop

interest shaping mechanism for ccn communications,”

in Proceedings of Computer Communications Workshops
(INFOCOM WKSHPS), Orlando,USA, Apr. 2012.

[26] G. Carofiglio, M. Gallo, and L. Muscariello, “Joint hop-

by-hop and receiver-driven interest control protocol for

content-centric networks,” SIGCOMM Comput. Com-
mun. Rev.

[27] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and

D. Towsley, “Multi-path tcp: A joint congestion control

and routing scheme to exploit path diversity in the

internet,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp.

1260–1271, Dec. 2006.

