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As the popularity of content-delivery applications (e.g., YouTube) grows, the inefficiency of transmission 

on the Internet has emerged, since in the TCP/IP networks, routers are unaware of the passing contents 

and the same content might be transmitted through the same path multiple times. To solve the problem 

as well as other problems, a lot of Information Centric Networking (ICN) architectures, including Named 

Data Networking (NDN), are proposed. These architectures enable the routers to identify and cache con- 

tents. 

In this paper, we design an efficient and feasible scheme of caching and routing for NDN, i.e., Selec- 

tive cAching and Dynamic rOuting (SADO). First, we propose a selective caching method that balances 

caching load among routers and reduces the caching redundancy dramatically. Then, we provide a scal- 

able method to maintain routing information for the in-router cached contents. After that, a probabilistic 

forwarding method for requests is proposed to minimize the expected cost of fetching contents. Finally, 

we evaluate the performance of SADO by comprehensive simulations. The simulation results show that 

SADO achieves a decrease of 34% in the cost of fetching a content and a decrease of 81% in the load 

carried by the source servers, and a cached content is utilized 0.8 times on average. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The current Internet architecture, proposed more than 40 years

go, is facing a lot of challenges. For example, a content may be

ransmitted through the same path multiple times if more than

ne client in the same stub area request the content simultane-

usly as the routers are unaware of the passing contents, leading to

ransmission inefficiency of the content-delivery applications (e.g.,

ouTube, P2P, etc.). Another example is that a personal webpage

ill be inaccessible through its original address if the webpage is

oved to a new website as its owner is employed by a different

ompany or university, although the webpage still exists in the In-

ernet. The root cause of the problems is that in IP networks we

equest a content through its location while actually we do not

are where the content is located at all. To solve the challenges, a

ot of Information Centric Networking (ICN) architectures [1–6] are

roposed, where the clients request a content by its name instead

f its location and the routers can cache contents and respond to

equests. 

Named Data Networking (NDN) [6,7] is one of the widely ac-

epted ICN architectures. There are two basic types of packets in

DN, i.e., data packet and interest packet. When a client wants to
∗ Corresponding author. 
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equest a content, it will create an interest packet, write the name

f the content into the interest packet, and send the interest packet

o its delegate router. On receiving an interest packet, the router

ill examine its content store to determine if the requested con-

ent is available. If the content is available, it will return the con-

ent to the requester as a data packet. Otherwise, it will examine

ts Pending Interest Table (PIT) . If a PIT entry corresponding to the

nterest packet has existed in the PIT, it will append the incoming

nterface of the interest packet to the interface list of the PIT entry.

f such a PIT entry does not exist, the router will add the name

nd incoming interface of the interest packet as a new PIT entry

nto the PIT and forward the interest packet using the information

rom Forwarding Information Base (FIB) . If the matching FIB entry

s not available or all the upstream links are congested, the router

ill send a NACK packet [8] to the downstream node from which

he interest packet is from. When a data packet arrives at a router,

he router will cache the data packet into its content store if the

aching method requires to do that, and forward the data packet

hrough all the interfaces in the interface list of the matching PIT

ntry. Thus the data packet always travels in reverse the same path

s the interest packet requesting it. 

However, NDN has several issues to be addressed before it

ould be deployed. Two of the issues are which data packets

hould be cached and how to construct the FIB of a router, i.e.,

he caching method and the routing method. The primitive caching
for named data networks, Computer Communications (2016), 
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method in NDN requires a router to cache every data packet pass-

ing by [6] , which means that a router will have to cache 1.16 GB of

data per second in a network with the bandwidth of 10 Gbps.

This method is therefore infeasible as it requires an excessively

large content store capacity in a router to allow a data packet to

have enough residence time in the content store, while the cached

data packets, including the packets for the popular contents, will

be evicted frequently as the content store capacity of a router is

limited. On the other hand, the high caching redundancy resulted

in by this caching method will waste a lot of valuable caching ca-

pacity. In the extreme case, suppose that there are 10 routers in

a transmission path, and the content store of every router could

accommodate 10 0 0 data packets. We further assume that there is

a single server and a single client only in the network, which are

located at the two ends of the path respectively. Since every router

will cache every data packet passing by, the data packets cached by

every router will be the same. As a result, only 10 0 0 different data

packets are cached on the path, while the path could accommo-

date up to 10,0 0 0 data packets in total, which will undermine the

hit ratio severely. The researchers have observed the phenomenon

early, so they proposed to cache the data packets at the hot spots

in the network where they will be utilized with high probability

[9] , or cache the data packets with popular contents in higher pri-

ority [10] . The newly proposed caching methods work well in spe-

cific scenarios, but their drawbacks are obvious. For example, by

caching the data packets in the hot spots, the routers located in

the hot spots will be overloaded while the content stores of other

routers will be underutilized. 

As for the routing methods, previous works (e.g., NLSR [11] ) on

this topic usually don’t consider the routing for the cached data

packets. Instead, they maintain routing information for the files

stored in source servers permanently and route interest packets to

the source servers of requested data packets. So the cache hit oc-

curs only when the requested data packet happens to be cached in

the routers on the path from the requester to the server. The rea-

son that the previous routing methods avoid routing interest pack-

ets to cached data packets explicitly is that it’s expensive for every

router to notify other routers of the cached data packets as that

will introduce significantly high communication overhead. More-

over, since the cached data packets are evicted frequently and the

residence time that a data packet stays in the content store of a

router is short, the notified information may be outdated shortly

because of packet eviction. However, if a cache hit occurs only on

the path from the requester to the server, the function of caches

in the routers will be really limited. In the above example, there

are 10 routers on the path from the client to the source server and

every router could accommodate 10 0 0 data packets, then the path

could accommodate at most 10,0 0 0 different data packets even if

the caching method is highly efficient and caching redundancy is

eliminated completely. As the amount of data packets in the Inter-

net is so large that the cache hit ratio is expected to be very low

even if the most popular 10,0 0 0 data packets are cached on the

path. Thus we argue that routing to the cached data packets inten-

tionally is necessary to fully utilize the content stores of routers in

the network and improve the cache hit ratio, but heavy communi-

cation between routers should be avoided. 

The common drawback of the prior works is that they con-

sider the caching method and routing method separately. For ex-

ample, they assume that the routing method is there and ask how

we could improve the cache hit ratio through an efficient caching

method. Alternatively, they may assume that the caching method is

the local policy of a router and ask how we could route an interest

to some source, which is usually the source server of the requested

data packet. However, in this paper we argue that the caching

method and routing method should be considered as a whole, in

order to fully utilize the cached data packets. Intuitively, by con-
Please cite this article as: Q. Li et al., A smart routing scheme 
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idering the caching method and the routing method as a whole,

he router could know where a data packet will be cached even

f it does not cache the packet. Later when an interest packet re-

uesting the data packet arrives, it will forward the interest packet

owards the cached data packet, improving the cache hit rate and

educing the cost of fetching a data packet. 

In this paper, we propose a combined scheme, i.e., Selective

Aching and Dynamic rOuting (SADO) , to solve the caching and rout-

ng problem in NDN. The design of SADO is based on two princi-

les. The first is that to guarantee a relatively high utilization ratio

f the cached data packets, the frequent eviction of data packets

hould be avoided and a cached data packet should have a rela-

ively long residence time to stay in the content store, which re-

uires to reduce the caching redundancy of data packets. Thus we

ache a data packet in a single router when it is transmitted from

ts provider (e.g., a router, the source server) to a client, instead

f in every router on its transmission path as in [6] . We adopt

 probabilistic method to determine the caching router of a data

acket. As the content store capacity of different routers may be

ifferent, and a router with larger content store capacity could

ccommodate more data packets, the caching method should al-

ow the router with larger content store capacity to have a greater

hance of caching a given data packet. On the contrary, a router

ith larger traffic flowing through will serve more data packets

n a unit of time. To avoid overwhelming its content store, in our

aching method this router should have a lesser chance of caching

 given data packet. 

The second is that we should maintain routing information for

he cached data packets in a light-weight way while guaranteeing

he accuracy of the routing information. Note that it’s infeasible

or a router to maintain routing information for every cached data

acket in the network due to the significant communication over-

ead. Neither should the routers not maintain any routing informa-

ion for the cached data packets at all and wait for the cache hit

o happen on the path from the client to the source server, as this

ay result in the cache hit ratio to be low, which is stated before.

 possible compromise is to allow a router to maintain routing in-

ormation for the data packets passing by only, thus the commu-

ication overhead of maintaining routing information is avoided.

ote that routers aim to reduce the cost of fetching data pack-

ts by maintaining routing information for the cached data pack-

ts. Since interest packets and data packets are always transmitted

hrough a path which has relatively low cost, that a data packet is

ransmitted through a router implies that the router is located at

 good path and it is easy to access the cached packet. By main-

aining routing information for the data packets passing through,

he router will maintain routing information for a large number of

asy-to-access data packets around it, which helps to reduce the

ost of fetching data packets. 

We evaluate the performance of SADO by comprehensive simu-

ations on tree topologies as well as a real network topology. The

imulations show that SADO relieves the load borne by the source

ervers, reduces the cost of fetching a data packet, and improves

he utilization ratio of cached data packets effectively. 

In the paper we make the following contributions: First, we

ropose the idea of maintaining two separate routing tables, i.e.,

tatic routing table and dynamic routing table, for the data packets

tored in source servers and cached in routers respectively, making

he routing problem of NDN clearer. Second, we construct the dy-

amic routing table in a scalable way, where the accuracy of rout-

ng information is maintained without imposing extra load on the

etwork. Third, we propose a caching method that balances the

aching load among routers and reduces the caching redundancy

ffectively. Finally, we design a forwarding method that fully lever-

ges the static routing information and dynamic routing informa-

ion to minimize the cost of fetching a data packet probabilistically.
for named data networks, Computer Communications (2016), 
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The remainder of the paper is organized as follows. At first we

iscuss the related work in Section 2 . We introduce the framework

f SADO in Section 3 . In Section 4 we present the algorithm de-

ails of SADO, including the method of caching data packets and

aintaining routing information for them as well as the method

f forwarding interest packets. In Section 5 , we evaluate the perfor-

ance of SADO. We make a conclusion of this paper and introduce

ur future work in Section 6 . 

. Related work 

The topic of caching has been widely investigated even before

DN is proposed. In SAN (Storage Area Network), clients as well as

rrays are equipped with cache memory. When a client requests a

ata object that is not in the client cache, the array cache or the

rray itself will supply the data object. When the request is com-

leted, both the array cache and the client cache hold a copy of

he data object. In fact, any data object in client cache exists in

he array cache, if it is not evicted then, causing the waste of valu-

ble cache capacity. Wong et al. [12] proposed DEMOTE to reduce

he repetition between client cache and array cache. In DEMOTE,

hen a data object is transmitted from the array cache to the

lient cache, the copy of the data object in array cache is moved

o the tail of the LRU (Least Recently Used) queue while another

opy of the data object is inserted in the head of the LRU queue

f the client cache, thus another insertion to the array cache may

ause the data object to be evicted there. This behavior is similar

o moving the data object from the array cache to the client cache.

hen a data object is evicted from the client cache, it is transmit-

ed back to the array cache and inserted at the head of the LRU

ueue, rather than being discarded directly. The main principle of

EMOTE is to guarantee that only a single copy of a data object

xists in the caches (including the array cache and client cache),

aking full use of the cache capacity. As DEMOTE achieves good

erformance in SAN, as shown in [12] , it is not easy to adopt this

ethod in NDN. In fact, it is necessary to maintain multiple copies

f a data packet and allow clients to access the nearby copy in

DN, due to the large scale of the network. Moreover, a cache usu-

lly has a large number of down-stream caches in NDN, which is

ifferent from the assumption in [12] where an array cache cor-

esponds to a single client cache. As a result, if a data packet is

eleted from the upper-stream cache once it is cached in one of its

own-stream caches, the requests for the data packet from other

own-stream caches will be missed, introducing large penalty in

erformance. 

LCD (Leave Copy Down) [13] is another caching method pro-

osed to reduce the repetition between upper-stream caches and

own-stream caches. LCD overcomes the drawback of DEMOTE so

hat it deals well with the scenario where an upper-stream cache

orresponds to multiple down-stream caches. While the de facto

aching method for the multi-level cache system is to cache a data

bject in every cache through which the data object travels, LCD

aches only a copy of the data object in the immediate down-

tream cache of the hit cache. LCD allows a popular data object

o approach the clients as it is requested frequently, while the

ata objects that are less popular are limited in a few caches. This

aching method can be easily modified and applied to NDN. How-

ver, a multi-level cache system is different from NDN, where each

outer has caching capability and acts as a cache. In the multi-

evel cache system, the caches are deployed near the source server,

hus all the requests will arrive at the cache system finally and tra-

erse through some of the caches, which means that every cache

ill service requests if its down-stream caches don’t hold the re-

uested data objects. So the target of LCD is to maximize the ag-

regate capacity of the cache system by reducing the repetition be-

ween caches. On the contrary, caches are everywhere in NDN, and
Please cite this article as: Q. Li et al., A smart routing scheme 
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 cached data packet may not be accessed again even if it is pop-

lar. Thus what is most desirable in NDN is to increase the proba-

ility that cached data packets are utilized, while reducing the rep-

tition between caches is still an important consideration. 

As there have been sufficient works about caching, researchers

raw a lot of lessons from the existing solutions when design-

ng the caching methods for NDN. The primary caching method

n NDN is to allow a router to cache every data packet passing

y [6] . As many papers stated [9,14,15] , this blind caching method

esults in the cached data packets, including the packets with pop-

lar contents, to be evicted frequently. Moreover, the high caching

edundancy wastes a lot of valuable in-network storage. Thus this

aching method is inefficient in the sense of improving the cache

it ratio and the utilization of in-network storage. As the drawback

f this caching method has long been observed, many advanced

ethods have been proposed. 

As some contents may be more popular than others in real net-

orks, making this kind of contents widely available in the net-

ork will provide convenience to the end users. With this in mind,

AVE [10] proposed to cache the popular contents preferentially.

pecifically the data provider will set the cache suggestion bit of

he data packet before sending it to the requester, where the data

rovider is the source server or a router that can supply the data

acket. On receiving a data packet with the cache suggestion bit

et, a router will cache the data packet and reset the cache sug-

estion bit to 0, thus down-stream routers will not cache the data

acket again. So the more frequently a data packet is requested,

he more copies of it will be cached in the network, and the closer

o the clients the copies will be, thus the cost of fetching the pop-

lar contents will be reduced. Obviously, WAVE is a NDN-version

f LCD, so it shares the drawbacks of LCD as discussed above, i.e.,

s it reduces the repetition between content stores of routers, the

robability that a cached data packet is utilized may be low due to

he large scale of NDN and the widespread distribution of caches

n NDN. 

One method to increase the probability that cached data pack-

ts are utilized is to cache the data packets in the “hot” routers

here interest packets pass by frequently. Goh et al. [16,17] re-

orted that the load borne by a node in shortest path based net-

ork is closely related to the betweenness of the node, where the

etweenness of a node is defined as the number of shortest paths

etween any two nodes of the network that pass through the node.

verett and Borgatti [18] further found that the betweenness of a

ode in real networks is highly correlated with its betweenness

n its ego network, where the ego network of a node consists of

his node and all its neighboring nodes as well as all the links

mong them. As the ego network betweenness of a node could

e computed locally, it is a good measure of importance of this

ode. Based on this observation, Chai et al. [9] proposed to cache

 data packet in the router(s) with the highest ego network be-

weenness on its transmission path, to maximize the probability

hat the cached data packets are utilized. However, this method

ill make a small handful of routers with high ego betweenness

verloaded, while the content stores of a lot of routers with rela-

ively low ego betweenness are not fully utilized, resulting in the

aste of valuable in-network storage. 

Notice that in-network storage near the source server may

e shared by more flows than that near the clients. ProbCache

15] suggests to cache data packets in the routers closer to the 

lients with higher probability, thus the in-network storage closer

o the source server can be utilized by the clients near the source

erver. ProbCache determines the number of copies of a given data

acket that should be cached on its transmission path based on

he size of in-network storage of the path and the traffic flowing

hrough this path. Moreover, ProbCache calculates another factor,

acheWeight, which increases and approaches 1 as the data packet
for named data networks, Computer Communications (2016), 
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Table 1 

The structure of static routing table. 

Prefix 1 (face 1 , dist 1 ), (face 2 , dist 2 ), ... 

Prefix 2 (face 3 , dist 3 ), (face 4 , dist 4 ), ... 

Table 2 

The structure of dynamic routing table. 

Prefix 1 (face 1 , dist 1 , number 1 ), (face 2 , dist 2 , number 2 ), …

Prefix 2 (face 3 , dist 3 , number 3 ), (face 4 , dist 4 , number 4 ), …

i  

t  

c  

i  

d  

w  

n

 

a  

c  

c  

a  

a  

c  

e

3

 

(  

c  

p  

b  

A  

S  

t  

fi  

i  

t  

q  

n  

d  

fi  

s  

i

 

n  

r  

t  

T  

t  

a  

h  

i  

b  

N  

T  

e  

/  

a  

d  

c  

f  

r  
gets closer to the requester. The possibility that a data packet is

cached in a router is the product of the number of copies and the

value of CacheWeight. The weakness of ProbCache is that it’s hard

to estimate the traffic flowing through a path. ProbCache simply

assumes that the traffic flowing through a router within 1 sec is

equal to the content store capacity of the router. Notice that the

content store capacity of a router is fixed, while the traffic flowing

through this router is highly related to its location in the network

and it varies from time to time. Thus the assumption of traffic

flowing through a router in ProbCache is overly simplified. Another

drawback of ProbCache lies in its design principle, i.e., preferring to

caching data packets in the routers near clients, since the closer to

clients a data packet is cached, the smaller the probability is that

the data packet is utilized by other clients. 

Previous works about routing in NDN usually avoid routing

interest packets towards the data packets cached in routers. In-

stead, interest packets are always forwarded towards the source

servers supplying the requested data packets. The routing frame-

work sketched in [6] suggests that any routing method working

well with IP networks should also work well with NDN since the

NDN forwarding model is a superset of the IP model. For exam-

ple, the names of data packets in NDN are hierarchical and can be

aggregated, which is similar to the IP address, so the longest pre-

fix matching is suitable for NDN as well. Moreover, as looping of

interest packets is naturally prevented, an interest packet can be

forwarded through multiple interfaces in NDN while a packet can

be forwarded through a single interface only in IP networks, so the

routing methods are expected to be more efficient than that in IP

networks. 

As [6] provides a solution framework for the routing problem

in NDN, more work is needed to make the routing a reality. The

first NDN routing protocol is OSPFN [19] , which is an extension of

OSPF. But this simple adaption of an IP routing protocol brings in

many drawbacks, including the management of IP address space

and the support for multi-hop forwarding [20] . So another link

state routing protocol, NLSR [11] , is proposed. In NLSR, a router

will send “info” interest packet periodically to all of its neighboring

routers. The neighboring routers will respond to this info packet

to indicate that they are still alive. If there is no response for a

few info packets, the neighboring router is considered down. There

are two types of Link State Advertisements (LSAs), i.e., Adjacency

LSA and Prefix LSA, to maintain the information for the links con-

necting this router and all the neighboring routers and the infor-

mation for the prefixes registered to this router respectively. The

LSAs are stored in a Link State Database (LSDB) and CCNx synchro-

nization protocol, Sync [21] , is used to synchronize the LSDBs be-

tween neighboring routers. Finally, for each router, NLSR removes

all the neighboring links but one and then runs the Dijkstra al-

gorithm to compute the FIB. This process is performed for each

neighboring link and multiple next-hops for each destination node

are produced. 

While the forwarding plane in IP networks is stateless and

packets are simply forwarded through the interface associated with

the matching FIB entry, the forwarding plane in NDN is stateful

(e.g., PIT records the names and incoming interfaces of interest

packets) and more complicated forwarding strategy is needed. In

[8] authors defined a new type of packet, i.e., NACK packet. When a

router receives an interest packet from a down-stream router, if an

interest packet with the same name and nonce has been received

before and thus it is a duplicate interest packet, or the upper-

stream router foresees that congestion will occur, or the upper-

stream router has no available interface to forward the interest

packet, it will return a NACK packet to the down-stream router.

The authors further proposed a coloring scheme for the interfaces

in FIB entries. The initial status of an interface is yellow. When

data packets arrive through this interface in probing process, this
Please cite this article as: Q. Li et al., A smart routing scheme 
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nterface is marked as green. When a pending interest packet on

his interface times out, or a NACK packet with the code of “Dupli-

ate” or “No Data” is received through this interface, this interface

s marked as yellow. An interface is marked as red when it goes

own. When transmitting interest packets, green interfaces are al-

ays preferred over the yellow interfaces and red interfaces are

ever selected. 

Since the routing methods and forwarding model presented

bove work well and are perpendicular to SADO, we won’t dis-

uss them deeper in this paper. Instead, observing that the existing

aching methods and routing methods avoid performing routing

round the cached data packets, we will try to consider the caching

nd routing as a whole and forward interest packets towards the

ached data packets explicitly, which is heavily dependent on the

xisting routing methods and forwarding models. 

. Framework of SADO 

Currently SADO focuses on the file distribution applications

e.g., YouTube) only, and we leave the research on more compli-

ated applications as our future work. The file distribution ap-

lications provide the convenience that the size of the file to

e transmitted is known a prior, which is important to SADO.

s a starting point we will introduce the naming scheme of

ADO at first. A data packet in NDN is named after the pat-

ern of “< file-name > / < pkt-num > / < pkt-seq > ”, where <

le-name > , which identifies the file to be transmitted, could be

n arbitrary form, < pkt-num > is the number of data packets

he source file is segmented into, and < pkt-seq > is the se-

uence number of this data packet. For example, a data packet

ame of “ndn://youtube/transformer/10 0 0/50” indicates that the

ata packet’s source file is “ndn://youtube/transformer”, the source

le is segmented into 10 0 0 data packets and this data packet has

equence number of 50. An interest packet has the same name as

ts corresponding data packet. 

There are two routing tables, i.e., static routing table and dy-

amic routing table , in a router. As shown in Table 1 , the static

outing table is the same as that introduced in [6] , i.e., each en-

ry corresponds to a prefix and may contain multiple interfaces.

here is a distance , which is the number of hops from this router to

he destination server, associated with each interface. Maybe there

re other tags such as color [8] associated with each interface to

elp to select the interface to forward interest packets, but this

s out of the scope of this paper. The static routing table could

e generated through the mature routing methods in NDN (e.g.,

LSR [11] ). The structure of the dynamic routing table is shown in

able 2 . Each entry of the dynamic routing table corresponds to an

xtended prefix (or E-Prefix for short) which is the “< file-name >

 < pkt-num > ” part of the corresponding data packet name, thus

 dynamic routing entry corresponds to a file instead of a single

ata packet. The information associated with the extended prefix

onsists of triples in the form of (face, distance, number) , where

ace indicates through which face the cached data packets can be

eached, distance is the distance from current router to the caching
for named data networks, Computer Communications (2016), 
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Fig. 1. Framework of SADO. 
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outer (the router in which the data packets are cached), and num-

er indicates how many data packets with this prefix are cached

here. 

In SADO when an interest packet is transmitted from the client

o the content provider (the source server or a caching router) it

ill select a single router to be the caching router of the response

ata packet, and when the response data packet is transmitted

ack to the client, it will be cached in this caching router and all

he other routers on the transmission path will maintain routing

nformation for the cached copy. To achieve this, we extend the

eaders of data packet and interest packet to record some essential

nformation which will be explained in Section 4 . As Fig. 1 shows,

hen an interest packet arrives at a router, it will first be pro-

essed by the interest processing module . This module determines

hether current router should be selected to be the new caching

outer of the response data packet, based on the caching informa-

ion in the interest packet and this router’s properties. If current

outer is selected, this module will update the caching informa-

ion in the interest packet to record the decision. Then the inter-

st packet is passed to the interest forwarding module . This mod-

le queries the static routing table as well as the dynamic rout-

ng table and selects a face based on the returned information to

orward the interest packet. At the beginning stage, the dynamic

outing table is empty, thus the module will forward the interest

acket based on the static routing information solely, which routes

he interest packet to the source server. Later, as dynamic rout-

ng information is collected, this module will leverage the static

outing information and dynamic routing information to select the

est face to forward the interest packet. In the case where dy-

amic routing information is present, the interest packet may be

orwarded to a caching router instead of the source server. For ex-

mple, in Fig. 1 , if the interest forwarding module of R 5 finds that

he face to the caching router ( R c ) is a better choice than the face

o the source server ( S ), it will forward the interest packet to R c . 

When the interest packet finally arrives at the content provider,

he provider will copy the caching information from the interest

acket to the response data packet and send the data packet back

o the client. When the response data packet arrives at a router,

t is first processed by the data processing module . If the caching

nformation in the data packet indicates that current router is the

aching router selected previously, this module will cache the data

acket. Otherwise, the module will be able to infer where the data

acket will be cached (or has been cached) and calculate the dis-

ance from current router to the caching router, from the caching

nformation. Thus the module will update the dynamic routing ta-

le accordingly. Then the data packet is passed to the data forward-

ng module , where the data packet is forwarded using the informa-

i  

Please cite this article as: Q. Li et al., A smart routing scheme 
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ion in the matching PIT entry. Since the function of data forward-

ng module is largely the same as that in the original NDN, we

on’t discuss it deeper. 

Notice that a router maintains dynamic routing information for

he data packets passing through it only. If some data packets

re cached on the nearby routers but have not been transmitted

hrough this router, this router won’t be able to utilize the cached

opies. As this may result in inefficiency to some extent, it’s a rea-

onable comprise since utilizing all the packets cached on nearby

outers may require flooding, which will introduce a lot of load to

he network. Moreover, even if this router cannot utilize the pack-

ts cached on nearby routers, it’s likely that the upstream routers

re able to utilize them. 

To complete the routing task, there are three challenges to ad-

ress in SADO: 1) How do the interest processing modules on the

ransmission path collaborate with each other to select the caching

outer of the response data packet, thus the caching load among

he routers is balanced? 2) How to record the caching informa-

ion so that the caching router can cache the response data packet

hile the other routers can maintain routing information for the

ached copy? 3) What is the “best face” to forward an interest

acket and how to leverage the dynamic routing information and

tatic routing information to select the best face? 

. Algorithm details 

This section explains the functions of interest processing mod-

le, data processing module and interest forwarding module in

ig. 1 . When an interest packet is transmitted from the client to

he data provider, it will collect relevant information about the

ransmission path, which is completed by the interest processing

odules of the routers; when the response data packet is trans-

itted from the data provider to the client, the routers will cache

he data packet or maintain dynamic routing information for the

ached copy of the data packet, which is completed by the data

rocessing module of the routers. The data forwarding module

ill leverage the dynamic routing information as well as the static

outing information to forward the interest packet. 

.1. Collect information 

The method of determining the caching router in SADO inte-

rates the ideas proposed in [9] and [22] . As shown in Fig. 1 , a

outer has three properties, i.e., identifier (ID), ego betweenness (EB)

nd content store capacity (CP) . According to [18] , the ego network

etweenness centrality (or ego betweenness in short) of a router

n real, random networks is highly correlated with the between-
for named data networks, Computer Communications (2016), 
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Table 3 

The extra fields in interest packet header and data packet header. 

Field Interest packet Data packet 

URD Distance from client to current router Distance from client to current router 

ARD Distance from client to temporary caching router Distance from client to ultimate caching router 

WT Weight of the temporary caching router –

HV Hash value of router weight and packet prefix –
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ness centrality of the router in the whole network, where the be-

tweenness centrality of a router is defined as the number of short-

est paths between any two routers passing through this router. [16]

and [17] further reported that the load borne by a node in a short-

est path based transport network is closely related to the between-

ness centrality of the node. So the ego betweenness of a router

is a good measure of the traffic flowing through this router. Note

that the ego betweenness of a router is related to the connections

among this router and its neighbors only, so it is static and can be

computed locally. To balance the caching load among routers, we

define the weight of a router as the ratio of its content store capac-

ity to its ego betweenness, and a router with larger weight should

have a greater chance of caching a given data packet. 

As shown in Table 3 , we add four extra fields into the inter-

est packet header, i.e., URD (cUrrent Router Distance), ARD (cAching

Router Distance), WT (WeighT) and HV (Hash Value); We add an-

other two fields URD and ARD into the data packet header. The

meaning of the fields will be clarified later in the paper. We have

a predefined hash function h which takes two strings as its inputs

and outputs a uniformly random number between 0 and 1. 

Suppose interest packet IN is produced by client C and re-

sponded by data provider P . Note the data provider can be the

source server of the requested data packets as well as a router that

could supply the requested data packet. The path IN travels is “C-

R 0 -R 1 − · · · -R n −1 -P”, where R 0 , R 1 , … , R n −1 are routers. The values

of URD, ARD, WT and HV are initialized to 0 when IN is gener-

ated. When IN arrives at any router R i , it is first processed by the

interest processing module of R i as follows: 

1. Increase the URD of IN by one, so URD counts the number of

hops the interest packet has traveled from its sender. If this

router has the requested data packet in its content store, end

the process. 

2. Extract IN ’s values of HV and WT and assign them to v 1 and ω 1 

respectively, i.e., v 1 = IN.HV, ω 1 = IN.W T . 

3. Hash the ID of this router and the extended prefix of IN to a

random number v 2 , and assign the weight of this router to ω 2 ,

i.e., v 2 = h (R i .I D, I N.pre f ix ) , ω 2 = 

R i .CP 
R i .EB . 

4. Compare ω 1 and ω 2 and assign the values of α1 and α2 as fol-

lows: 

if ω 1 < ω 2 , 

α1 = 

2 ω 1 

ω 1 + ω 2 

, α2 = 1 

else, 

α1 = 1 , α2 = 

2 ω 2 

ω 1 + ω 2 

5. Compare α1 · v 1 and α2 · v 2 . If α2 · v 2 ≥ α1 · v 1 , select the cur-

rent router as the new temporary caching router, and update

WT, HV and ARD of IN by IN.WT ← ω 2 , IN.HV ← v 2 , IN.ARD

← IN.URD . So WT records the weight of the temporary caching

router, HV records the hash value computed from the caching

router’s identifier and the interest packet’s extended prefix, and

ARD records the distance in hops from the client to the tempo-

rary caching router. 

When the interest packet finally arrives at the data provider,

the URD and ARD of IN record the distances from the client to
Please cite this article as: Q. Li et al., A smart routing scheme 

http://dx.doi.org/10.1016/j.comcom.2016.09.012 
he data provider and the ultimate caching router respectively. WT

s the weight of the ultimate caching router, and HV is the hash

alue of the interest packet’s extended prefix and the ID of the ul-

imate caching router. We take the router ID as one input of the

ash function, thus we will obtain different hash values in differ-

nt routers. Since we take the interest packet prefix instead of its

hole name as the other input of the hash function, all the in-

erest packets corresponding to the same file and passing through

he same path will select the same caching router. This observa-

ion will benefit the maintenance of dynamic routing table in the

econd stage. 

To simplify the description, let ω 0 , ω 1 , …, ω n −1 denote the

eights of R 0 , R 1 , …, R n −1 respectively. In the following we will

rove that the probabilities of R 0 , R 1 , …, R n −1 to cache the re-

ponse data packet are in the ratio of ω 0 : ω 1 : · · · : ω n −1 , based

n which we will further prove that the number of data packets

ached in a router is proportional to the content store capacity of

his router in the whole network scale. 

When IN arrives at R 0 , since its initial value of HV is 0, R 0 is

elected to be the caching router temporarily. Then IN is forwarded

o R 1 . 

Consider R 0 and R 1 . The hash values of their IDs and IN ’s prefix

re v 0 and v 1 respectively. Notice that v 0 and v 1 are independent

f each other and distributed in the interval [0, 1] uniformly. If ω 0 

 ω 1 , we have α0 = 1 and α1 = 

2 ω 1 
ω 0 + ω 1 . So R 1 is selected to be the

aching router in a probability of 

p{ α1 v 1 ≥ α0 v 0 } = p 

{ 

v 0 ≤ 2 ω 1 

ω 1 + ω 0 

· v 1 
} 

= 

ω 1 

ω 1 + ω 0 

. 

R 0 is selected to be the caching router in a probability of 

 − p{ α1 v 1 ≥ α0 v 0 } = 

ω 0 

ω 1 + ω 0 

. 

Thus the probabilities that R 0 and R 1 are selected to be the

aching router are in the ratio of ω 0 : ω 1 . The case where ω 0 ≤
 1 can be proved in the similar way. 

Similarly, we can prove that for any two routers R i and R j , their

robabilities to be selected to be the caching router are in the ratio

f ω i : ω j , thus the probabilities of R 0 , R 1 , … , R n −1 to cache the

esponse data packet are in the ratio of ω 0 : ω 1 : · · · : ω n −1 . 

As the ego betweenness of a router is highly correlated with the

etweenness centrality of the router in the whole network scale,

nd the load borne by a router is closely related to its between-

ess centrality [16–18] , we define a simplified model where the

raffic flowing through a router is proportional to the ego between-

ess of the router. Consider two arbitrary routers R i and R j in this

odel. Their ego betweennesses are EB i and EB j , and their content

tore capacities are CP i and CP j respectively. Since their probabili-

ies to cache a given data packet are in the ratio of 
CP i 
EB i 

: 
CP j 
EB j 

, we

an assume that their probabilities to cache a data packet are λ
CP i 
EB i 

nd λ
CP j 
EB j 

respectively, where λ is a constant. We assume that the

raffic in packets flowing through R i and R j are μEB i and μEB j re-

pectively, where μ is another constant. So the numbers of data

ackets that will be cached in R i and R j are in the ratio of 

CP i 
EB i 

· μE B i : λ
CP j 

E B j 

· μE B j = CP i : CP j . 
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Thus the number of data packets cached in a router is propor-

ional to the content store capacity of this router, and the caching

oad is balanced among the routers. While the proof above adopts

any rough assumptions, it is reasonable on the whole. 

After being processed by the interest processing module, if the

urrent router cannot supply the requested data packet, this inter-

st packet will be passed to the interest forwarding module. The

nterest forwarding module will select the best face to forward the

nterest packet. The method of selecting the forwarding face will

e introduced in Section 4.3 . 

.2. Cache data packet & maintain routing information 

When the interest packet arrives at the data provider at last, its

RD records the number of hops from the client to the provider,

hich is the length of the transmission path, and its ARD records

he number of hops from the client to the ultimate caching router.

he provider sets the URD and ARD of the response data packet

o the corresponding values in the interest packet, and sends the

ata packet back to the client. When the data packet arrives at

outer R i , it is first processed by the data processing module of

 i . The module decreases the URD value of this data packet by 1

t first, thus URD records the distance from the client to the cur-

ent router. Note that ARD records the distance from the client

o the caching router. Then the module compares the values of

RD and ARD. If URD = ARD, current router is the caching router

elected previously, so the data packet is cached. Otherwise, if

RD > ARD , the data packet will be cached in later routers. The

istances from current router to the caching routers are URD −
RD, and the caching routers can be reached through the faces 

hrough which the data packet is forwarded, i.e., the faces in the

IT entry corresponding to this data packet. In contrast, if URD

 ARD , the data packet must have been cached in a previous

outer. The distance from the current router to the caching router

s ARD − URD, and the caching router can be reached through the

ncoming face of the data packet. 

In the case where URD � = ARD , the module will maintain dy-

amic routing information for the data packet. Since clients usually

equest a file instead of a single data packet and the interest pack-

ts corresponding to the same file and passing through the same

ath will select the same caching router, the data packets corre-

ponding to the same file tend to be cached in the same router. As

n Table 2 , we maintain a dynamic routing entry for a file instead

f a single data packet, thus the size of the dynamic routing table

s reduced dramatically while its accuracy is maintained to a large

xtent. A dynamic routing item consists of an extended prefix and

ultiple triples in the form of (face, distance, number) . Now sup-

ose that the module has obtained the extended prefix of the data

acket and a set of faces through which the caching routers can be

eached as well as the distance from current router to the caching

outers. 

If an entry corresponding to the prefix doesn’t exist in the dy-

amic routing table, the module will simply add an entry for the

refix, and a triple with the number as 1 will be added to the item

or each face in the face set. If an entry has existed, the module

ill update the entry as follows. For each face in the face set, if

 triple corresponding to the face doesn’t exist in the entry, such

 triple will be created with the number as 1. Otherwise, the dis-

ance of the triple is updated to the weighted average value of the

riginal distance and the newly obtained distance with the weights

s the original number and 1 respectively and then the number in

he triple is increased by 1. For example, if the original triple is

face 1 , dist 1 , num 1 ), and now a new data packet with the same

xtended prefix could be reached through face 1 and the distance

etween current router to the caching router is dist , we will up-
2 
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ate the triple as follows: 

d ist 1 ← 

d ist 1 × num 1 + dist 2 
num 1 + 1 

num 1 ← num 1 + 1 

After being processed by the data processing module, the data

acket is passed to the data forwarding module, where the data

acket is forwarded using the information in the matching PIT en-

ry. 

Since a cached data packet will be evicted due to the limited

ontent store capacity of routers, the dynamic routing information

eeds to be updated to fit the caching status of the in-network

torage. In SADO every router will maintain an estimate T, which is

he moving average duration that a data packet is kept in the con-

ent store of this router and is updated every time a data packet

s evicted. SADO conservatively assume that every data packet for

hich the router maintains dynamic routing information will be

victed in T sec. So when a router adds the dynamic routing infor-

ation about a data packet into the dynamic routing table, it will

tart a timer which will expire in T sec and remove the routing in-

ormation about the packet from the dynamic routing table when

he timer expires. 

.3. Forward interest packets 

Since the static routing table and dynamic routing table may

rovide multiple faces to forward an interest packet, the interest

orwarding module must decide which one to use. The interest for-

arding module queries the static routing table at first. As there

ay be multiple available faces in the matching entry (e.g., mul-

iple green faces as described in [8] ), only the best face as well

s the distance associated with the face will be returned. Sup-

ose this query returns the face f 1 to the server and the distance

 1 from current router to the server. If it forwards the interest

acket through f 1 , the cost of fetching the target data packet is 2 d 1 .

he cost here refers to the total distance traveled by the interest

acket and its response data packet. Then the module queries its

ynamic routing table. The dynamic routing table may provide sev-

ral choices to forward the interest packet. Suppose one choice in-

icates that the distance from current router to the corresponding

aching router is d 2 , and there are m data packets with matching

refix cached there. Assume the name of the interest packet indi-

ates that the source file is segmented into n data packets. Now

onsider that the module forwards the interest packet through the

ace provided by this choice. Since a dynamic routing entry cor-

esponds to a file instead of a single data packet, this choice can-

ot guarantee that the requested data packet exists in the caching

outer. If the requested data packet exists in the caching router, the

ost of fetching the data packet is 2 d 2 . This happens in a probabil-

ty of m 

n . In the case where the requested data packet doesn’t exist

here, this router will have to request the data packet from the

ource server again. In this case the cost of fetching the requested

ata packet is 2 d 1 + 2 d 2 , and this happens in a probability of n −m 

n .

o the expected cost of fetching the requested data packet is 

m 

n 

· 2 d 2 + 

n − m 

n 

· (2 d 1 + 2 d 2 ) . 

Using this approach, the interest forwarding module can com-

ute the expected cost for every available face provided by the

tatic routing table as well as the dynamic routing table. As in [8] ,

he router will select the face with the lowest cost to forward the

nterest packet and start a re-try timer at the same time. If the

e-try timer expires before the requested data packet is fetched

ack, the router will stop trying alternative faces and send a NACK

acket to the downstream router from which the router received

he interest packet. Otherwise, if the router receives a NACK packet
for named data networks, Computer Communications (2016), 
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from the upstream node before the re-try timer expires, it will try

the faces with larger cost until the requested data packet is re-

turned back or the re-try timer expires. 

5. Performance evaluation 

In this section we will verify the advantages of SADO over an-

other three caching methods through comprehensive simulations.

The three methods adopt the static routing method which routes

a given interest packet to the source server of the requested data

packet. The first caching method is that proposed in [6] , which re-

quires a router to cache each data packet passing by. We denote

the caching method by CCN. As many researchers have pointed out,

this caching method is of low efficiency. We evaluate its perfor-

mance in this section and take it as a baseline for other more ad-

vanced caching methods. The other two caching methods we com-

pare against are EgoBetw [9] , which caches a data packet in the

router with the largest ego betweenness in its transmission path,

and WAVE [10] , which caches data packets with popular contents

preferentially. 

5.1. Simulation settings 

We have developed a discrete event-driven platform for the

simulations. The source code of the simulation platform could be

downloaded from [23] . In the simulations, each file consists of 100

data packets and the size of each data packet is 1500 bytes. There

are a large number of clients in the network and each client is

connected to a single router. When a client is started, it randomly

selects a file and requests all the data packets corresponding to the

file. After current file is completed, the client selects another file

and requests the data packets corresponding to the file again. The

probability that a file is selected follows the Zipf-like distribution

[24] , i.e., the i th most popular file is selected in a probability of C 
i α

where C = ( 
∑ 1 

i α
) −1 . As the value of α used in [10] is 0.85 and that

used in [9] is 1.0, in our simulations we set the value of α to 0.85.

The content stores take LRU as the eviction algorithm. Notice that

the routing tables in SADO are different from the FIBs of routers

in TCP/IP networks and they may need longer processing delay. In

our future work we will be devoted to improving the routing ta-

bles to make them meet the requirements of real deployment. At

this stage, to verify the effectiveness of SADO and avoid consider-

ing the processing delay of routers, we measure the total distance

traveled by an interest packet and its response data packet instead

of the delay experienced by the clients directly. To avoid conges-

tion of the network, each client has a sending window of 10, i.e., a

client has to wait until some of its outstanding interest packets are

consumed and the sending window moves forward before it could

send out another interest packet. 

In our simulations, we use three metrics, i.e., average distance

ratio, server load ratio and average utilization ratio of cached data

packets, to evaluate the performance of the routing schemes. The

average distance ratio is defined as 

average distance ratio = 

∑ K 
i =1 

d i 
D i 

K 

where d i is the total distance traveled by an interest packet and

its response data packet we measured, and D i is the total distance

the interest packet and its response data packet would travel if the

response data packet is fetched from the server directly. K is the

number of (interest packet, data packet) pairs in the sample. 

The server load ratio is defined as 

server load ratio = 

n 

, 

N 
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here n is the number of data packets supplied by the servers and

 is the number of data packets received by the clients, including

he data packets supplied by servers as well as routers. 

The average utilization ratio of cached data packets is defined

s 

verage utilization ratio = 

m 

M 

, 

here m is the total number of cache hits occurring in all routers,

nd M is the number of data packets cached by all the routers (in-

luding those that have been evicted), thus the average utilization

atio of cached data packets indicates how many times a cached

ata packet is utilized on average. 

Since the interest packets and data packets corresponding to

he same server are always transmitted along a tree of which the

erver is the root, the performance of the schemes on a tree topol-

gy is expected to be consistent with their performance on a real

etwork topology. We will test the performance of the schemes on

he tree topologies at first and then on a real network topology

xtracted from CAIDA [25] . For the simulations for tree topologies,

he impact caused by the height of the tree as well as the number

f files in the network will be examined. Basically we assume that

he capacity of content store is same for all the routers, and then

e will verify the performance of SADO in balancing the number

f data packets cached by routers by setting the content store ca-

acities of different routers to be different. Moreover, we will ex-

mine the performance of the caching methods when number of

lients attached to each router changes. 

.2. Simulations on binary tree topologies 

In the simulations on tree topologies, there is a single server

hich is located at the root of the tree, while the clients are lo-

ated at the leaves and the routers at the internal nodes. We first

xamine the performance of the caching methods on a binary tree

f 8 levels. The files supplied by the server is categorized into 10

ypes, where each type has a unique prefix. To examine the impact

aused by the number of files in the network on the performance

f the caching methods, we increase the number of files in each

ype from 100 to 200, thus the total number of files in the net-

ork is increased from 10 0 0 to 20 0 0. The content store capacity

f each router is such that it could accommodate up to 10 files,

.e., 10 0 0 data packets. 

Fig. 2 shows that the performance of SADO is better than that of

ther caching methods, that’s because SADO routes interest packets

owards cached data packets intelligently while in other caching

ethods cache hit occurs only when the requested data packet

s cached on the path from the client to the source server. Espe-

ially, SADO achieves the best performance compared with other

chemes when there are 100 files associated with each prefix. At

his point the average distance ratios of SADO and CCN are 0.57

nd 0.68, their server load ratios are 0.18 and 0.51, and their uti-

ization ratios are 1.18 and 0.16 respectively. Since the total size of

n-network storage is fixed, the probability that the requested data

acket is cached in the content stores is decreased as the number

f files increases, degenerating the performance of the four caching

ethods. Another finding is that the performance of EgoBetw is

he same as that of CCN. That’s because each router has the same

alue of ego betweenness in the binary tree topology and the re-

ponse data packet will be cached in every router in its transmis-

ion path, which is the same as that of CCN. 

Fig. 3 presents the distribution of distance ratios of the caching

ethods when there are 140 files in each type. The figure shows

hat in SADO cache hit occurs uniformly in the network. In con-

rast, the cache hit tends to occur in the routers near the clients in

he other three caching methods. For example, only 28.4% of the

istance ratios are within the interval of [0.0, 0.95] while 20.7% of
for named data networks, Computer Communications (2016), 
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Fig. 2. (a) Average distance ratio, (b) server load ratio and (c) average utilization ratio of cached data packets for various numbers of files associated with each prefix. 

Fig. 3. The Cumulative Distribution Function (CDF) of the distance ratios. 
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he distance ratios are within the interval of [0.0, 0.45] for CCN

and for EgoBetw as well), which means about 73% of the cache

its occur in the range that is 3 hops away from the client. On

he contrary, 54.3% of the cache hits occurs in the range that is

 hops away from the clients and 45.7% of the cache hits occur in

he range that is 4 through 6 hops away from the clients for SADO.

We further examine the performance of the routing schemes

n binary trees of various heights. In this group of simulations,

he height of the binary tree increases from 6 levels to 11 lev-

ls. There are 100 types of files in the network and each type

orresponds to 100 files. The content store of each router could

ccommodate 10 files. Fig. 4 shows that SADO outperforms the

ther three caching methods for every scenario. As the height of

he tree increases, the number of routers as well as the size of in-

etwork storage increases exponentially. As a result, the average

istance ratio and server load ratio of the caching methods grows

etter. However, since the CCN, EgoBetw and WAVE tend to utilize

he routers nearby and cache hit occurs only in the path from the

lient to the server in the caching methods, they fail to fully lever-

ge the newly added in-network storage, while SADO routes inter-

st packets towards cached data packets intentionally. As a result,

he performance of SADO increases more obviously than the other
ig. 4. (a) Average distance ratio, (b) server load ratio and (c) average utilization ratio of

o 11 levels. 
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aching methods. While the average distance ratio and server load

atio of the caching methods grows better, the average utilization

atio of cached data packets of the caching methods grows worse

aturally as the height of the tree increases, since more unpopular

ata packets are cached. 

Moreover, we test the performance of the four caching methods

hen changing the content store capacity of each router. We find

hat when the content store capacity of routers increases, the per-

ormance of CCN, EgoBetw and EgoBetw is improved dramatically

t first, and then improved slowly once the content store capacity

xceeds a threshold, which is caused by the heavy-tail distribution

f the popularity of the data packets. 

.3. Simulations on real network topology 

In the group of simulations we test the performance of the

aching methods on a real network topology which is extracted

rom CAIDA [25] and is from a single AS. There are 196 routers

n the network and the diameter of the network is 6. The content

tore of each router could accommodate 10 files. We choose 100

outers as the client delegates and another 5 routers as the server

elegates. There are 15 clients connected to each client delegate

nd 1 source server connected to each server delegate. We increase

he number of files a server can supply from 200 to 700. 

While SADO outperforms the other three caching methods con-

tantly, it achieves the best performance when each server can

upply 500 files, as shown in Fig. 5 . Since the dynamic routing

nformation is not absolutely correct and the forwarding decision

s made based on probability, an interest packet in SADO may be

orwarded towards a router where the requested data packet does

ot exist, introducing extra cost in fetching data packets. Hence the

verage distance ratio in SADO is only slightly better than that in

he other three caching methods. However, SADO achieves a really

ood performance in releasing the load borne by the source servers

nd increasing the utilization ratio of cached data packets. For ex-

mple, the load borne by the source servers in SADO is 33% of that
 cached data packets when the height of the topology tree increases from 6 levels 
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Fig. 5. The performance of the four caching methods on a real network topology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The distribution of content store (CS) capacity and number of data packets 

cached of each router. 
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in CCN, and the average utilization ratio of cached data packets in

SADO is 6.5 times over that in WAVE and 1.5 times over that in

EgoBetw. The smallest difference in average distance ratio between

CCN and SADO in the simulations is 0.04 and occurs when there

are 400 files in the network, but at this point their difference in

server load ratio is as large as 0.21 and their difference in utiliza-

tion ratio is as large as 0.65, which shows the great advantages of

SADO in reducing the load on servers and improving the utilization

ratio of the cached data packets. 

To examine the influence on performance caused by the num-

ber of clients attached to each client delegate, we run the above

simulation again. In this simulation, each server could supply 500

files and we increase the number of clients attached to each client

delegate from 5 to 30. As shown in Fig. 6 , the number of clients at-

tached to each client delegate does not have an obvious influence

on the performance of the caching methods. We believe that it is

because that all the clients select the files following the same rule

(i.e., the zipf rule with the parameter of 0.85). As a result, more

clients requesting files is equivalent to a client requesting files with

greater rate. 

As a router with larger content store capacity will cache a data

packet passing by with higher possibility in SADO, we will verify

the performance of SADO in balancing the number of data packets

cached in routers in the following simulation. The topology of net-

work is the same as that in last simulation and each source server

could supply 500 files. The content store capacities of the routers

are randomly distributed in the range of [5, 30] files. The link

bandwidth between any two routers is 1 Gbps. We run the sim-

ulation for 10 sec and record the number of data packets cached

by each router. We run the simulation for six rounds and take the

average number of cached data packets in each router. The con-

tent store capacity as well as the number of cached data packets

in each router is shown in Fig. 7 , which demonstrates that SADO

could balance the number of data packets cached in each router

very well. 
Fig. 6. (a) Average distance ratio, (b) server load ratio and (c) average utilization ratio of 
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. Conclusion and future work 

In the paper we propose a scheme, i.e., SADO, to cache data

ackets and route interest packets, and verify its effectiveness

hrough simulations. The main feature of SADO is that it consid-

rs the caching and routing as a whole and routes interest pack-

ts towards the packets cached on routers intentionally. We argue

hat it is necessary for utilizing the in-network storage efficiently

ince the in-network storage in a single transmission path is ex-

remely limited compared with the large amount of contents in

he whole network, and the improvement in the cache hit ratio

ill be poor even if the caching method is ideally efficient without

outing around the cached data packets intentionally. As the pre-

ious works usually avoid considering routing for the cached data

ackets since the packets are evicted frequently, our work is a good

tarting point for the dynamic routing in NDN. 

As the content store is not permanent storage and cached data

ackets will be evicted frequently, it’s necessary to update the dy-

amic routing information. In Section 4.2 we maintain a moving

verage duration T that a cached data packet is kept in local con-

ent store and assume that every data packet for which this router

aintains routing information will be evicted in T sec. As the

ethod works well in our simulations, we found that it is mem-

ry consuming. For example, suppose the average residence time

f data packets is T = 5 sec, the link bandwidth is 10 Gbps, each

imer need 5 bytes and the average size of a data packet is 1500

ytes, then the router will need up to 20 MB for the timers. In

ur future work we will devote to developing an more efficient

ethod to update the dynamic routing table. Moreover, the inter-

st forwarding module needs to determine a best face to forward

n interest packet based on the information from the static routing

able and the dynamic routing table. This will cause nonnegligible

elay anyway. In the future we will improve our method of pro-

essing an interest packet and make SADO meet the requirements

f real deployment. 
cached data packets for various number of clients attached to each client delegate. 
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