Journal of Network and Computer Applications 78 (2017) 253-266

Contents lists available at ScienceDirect

COMPUTER
APPLIGATIONS

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Quokka: Latency-Aware Middlebox Scheduling with dynamic resource
allocation

@ CrossMark

a,*

ing Li%, Yong Jiang™*, Pengfei Duan®, Mingwei Xu", Xi Xiao®
Qing Li%, Yong Jiang™*, Pengfei D Mingwei Xu®, Xi X

? Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
® Tsinghua University, Beijing, China

ARTICLE INFO ABSTRACT

In the current Internet, middlebox management has become a significant challenge for network operators. Some
schemes based on Software-Defined Networking (SDN) have been proposed in academia to simplify middlebox
scheduling. However, these schemes are inefficient with the dynamical traffic requirements, as they mainly focus
on stationary hardware middleboxes. Furthermore, the latency cannot be guaranteed in these schemes. In this
paper, motivated by Network Function Virtualization (NFV), we propose the scheme of Quokka to solve these
problems. In Quokka, we build a management framework for both computing resource and flow latency. We
also design a latency model to describe the latency behaviour of flows. Based on the framework and model, we
present a latency-aware scheme Quokka with portable software-based middleboxes that can be dynamically
scheduled (placed) according to the changing traffic and resources. Quokka controls the latency by dynamically
positioning the software middleboxes and scheduling the changing traffic. Therefore, different IT services with
different latency requirements can be satisfied in Quokka. Comprehensive experiments show: (1) compared with
traditional configuration methods, Quokka reduces the latency by about 20% on average; (2) Quokka requires

Keywords:

Software defined networks
Network function virtualization
Middlebox

30-50% less middleboxes than traditional schemes to achieve the same performance.

1. Introduction

Middleboxes, for instance, firewalls, proxies and WAN optimizers,
are networked appliances for complicated processing of packets. In the
traditional TCP/IP network, the management of middleboxes is gen-
erally a significant challenge because of intricacy in configuring the flow
service chain (Sherry et al., 2012; Quinn et al., 2014), which describes
the ordered processing list of middleboxes for a specific flow. The
configuration job becomes a nightmare especially when the policies are
correlative (Qazi et al., 2013). Software-Defined Networking (SDN) is a
new Internet paradigm that has and will continue to make significant
influence on the network infrastructure (Casado et al., 2007; Nunes
et al., 2014). As an innovative network technology, SDN has been
proposed and well accepted for network resource management (Kim
and Feamster, 2013). Specially, SDN can be used by the network
operators to simplify middlebox configuration. In previous works (Qazi
et al., 2013; Fayazbakhsh et al., 2014), SDN is employed for flexible
middlebox management, which helps the operators reduce the com-
plicated work of manual configuration.

However, these previous schemes only focus on generating middle-
box-related policies or flow entries for stationary hardware middle-

* Corresponding author.
E-mail address: jiangy@sz.tsinghua.edu.cn (Y. Jiang).

boxes, which are inflexible in serving the dynamically changing traffic.
In FlowTags (Fayazbakhsh et al., 2014 and Simple-fying (Qazi et al.,
2013), middleboxes (the number and positions) are fixed after network
initialization. Therefore, to make the packet passing a specific middle-
box, a path stretch may occur, which may cause extra latency. Besides,
the stationary deployment of hardware middleboxes cannot follow the
pace of dynamic traffic changing. Contributions of these schemes
mostly lie in middlebox configuration, and they pay less attention to
flow scheduling, thus is poor at restricting the latencies of packets.

To overcome the inefficiency problem in resource utilization and
latency control, we adopt Network Function Virtualization (NFV)
technology (Chowdhury and Boutaba, 2010), and employ software
middleboxes. In previous studies of NFV (Kohler et al., 2000; Dobrescu
et al., 2009), particular attentions are devoted to network forwarding
and processing in software. Based on these technologies, we build a
framework to manage both computing resource and flow latency .

In this paper, based on prior NFV/SDN researches, we present
Quokka,' a latency-aware and dynamic scheduling scheme of software
middleboxes. Quokka efficiently places middleboxes at proper positions
according to changing flows and assigns traffic to corresponding
middleboxes in the required service chain. Quokka is both efficient

1 Quokka is a kind of tiny and agile kangaroo in Western Australia, indicating flexibilities of software middleboxes.

http://dx.doi.org/10.1016/j.jnca.2016.10.021

Received 25 December 2015; Received in revised form 29 July 2016; Accepted 31 October 2016

Available online 05 November 2016
1084-8045/ © 2016 Elsevier Ltd. All rights reserved.

http://www.sciencedirect.com/science/journal/10848045
http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.10.021
http://dx.doi.org/10.1016/j.jnca.2016.10.021
http://dx.doi.org/10.1016/j.jnca.2016.10.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.10.021&domain=pdf

Q. Li et al.

and reliable, as Quokka's scheduling algorithm reacts to dynamic flows
robustly, thus continuously avoiding resource utilization inefficiency
and providing the lower latency for end users.

More specifically, we make the following contributions:

(1) We propose a model to formulate the latency behaviours of
packets, when they are being processed in the virtual middleboxes.
Different types of middleboxes may operate in different ways. For
instance, some middleboxes process the packet headers only, while
others may have to handle the whole packets together with data
payloads. Therefore, we employ two different queueing models to
analyze their internal behaviours.

We build a resource management framework, which employs both
the resource master and agents to handle computing resource
dynamically. Resource agents monitor resource usage status and
report changes to the master. The master provides up-to-date
resource snapshot to SDN controller for future usage in middlebox
controlling and scheduling. Fault-handling and blacklist mechan-
isms are also developed to make the framework more stable.

We design one algorithm to find the optimal positions for
middleboxes, and another algorithm to schedule traffic with the
given middlebox placement. Combining them together, Quokka
can dynamically adjust the number and positions of middleboxes,
and schedule flows in a low-latency way. Through these algo-
rithms, we surmount the resource utilization inefficiency and the
high delay problem in traditional scheduling schemes.

(@)

(3)

We evaluate the performance of our algorithms by comprehensive
experiments with diverse topologies. Experimental results show: first,
our scheduling algorithm averagely reduces the flow latency by 20%
compared with the static middlebox configuration and the traditional
load balancing; in addition, to achieve the same performance with the
same resource restrictions, Quokka requires respectively 50% and 30%
fewer middleboxes than the other two schemes.

2. Background and challenges
2.1. Middlebox management with SDN

Some schemes (Fayazbakhsh et al., 2014; Qazi et al., 2013) have
been proposed to manage middleboxes using SDN technologies.
However, contributions of these schemes mostly lie in middlebox
configurations, and they pay less attention to flow scheduling, thus
are poor at controlling the latencies of packets. The middlebox
deployment is fixed after network initialization. Therefore, to make
the packet passing a specific middlebox, a path stretch may occur,
which may cause extra latency. Besides, the stationary deployment of
hardware middleboxes cannot follow the pace of dynamic traffic
changing.

Fig. 1 shows an example of the delay problem in traditional load

E:J\HOSto [Idle, Ims]
S RO
ms
20ms Firewall,
20ms
5ms
[Overhead, 10ms]
Héstl Firewall,

Fig. 1. Example: Load Balancing of Middleboxes.

Journal of Network and Computer Applications 78 (2017) 253-266

balancing. Flows from Host, to Host; should be processed by a firewall,
either Firewall, or Firewally. Firewally, is overloaded and the proces-
sing delay is 10 ms, while Firewall,, is idle and the processing delay is
only 1 ms. Under the traditional load balancing scheme, without
considering the total packet delay, the flows will follow the path
Hosty — Firewall, — Host;, and the total latency should be 61 ms.
However, taking the total latency into account, the packets walk
through the path Hosty — Firewall, — Host;, and the latency is only
35 ms. Consequently, these prior schemes are unreliable in latency
restriction.

2.2. NFV and benefits

Stratos (Gember et al.,) is proposed as a controllable and scalable
framework for the efficient deployment of virtual middleboxes.
OpenNF (Gember-Jacobson et al., 2014) enforces the functions of
NFV with SDN, and provides a rich set of NFV/SDN APIs (move, copy,
share, etc.) for software middleboxes management, which makes it
feasible to dynamically schedule the middleboxes according to the
changing traffic. ClickOS (Martins et al., 2014) is then put forward to
improve the running efficiency of virtual middleboxes by optimizing the
underlying Virtual Machines. ClickOS can launch the middlebox soft-
ware within about 30 ms, which makes it possible for dynamically
deployment (add, delete, etc.) of middleboxes according to online
changing traffic.

2.3. Resource and latency management in clusters

Diverse applications are deployed in data centers and cloud plat-
forms (Alizadeh et al., 2010). Generally the public clouds have the
demand to provide the differentiated services for different applications
from different customers (Amazon,). These applications include not
only long time running batch (latency-insensitive) jobs like database
backup/recovery and logging immigration, but also instant processing
tasks, often tied with the user-facing products like mail and web search
(Verma et al., 2015). The first kind of jobs, which we call latency-
insensitive jobs here, often contain mass of data, but do not need
realtime delivery; the second type, latency-sensitive jobs, usually carry
less payload, but should be processed immediately. These flows should
be handled separately with different priorities.

Latency management is critically important in these networks. It is
reported that Amazon has 1% loss in revenue with 100 ms latency
increasing and Google's data delivery rate drops down 20% when
additional 500 ms latency is introduced (Munir et al., 2013).
Traditional TCP/IP which provides best-effort service for flows, cannot
provide any delay guarantees for high level applications. Previous
works like DCTCP (Alizadeh et al., 2010) and D®*TCP (Vamanan et al.,
2012) control sliding windows and make high priority scheduling for
short-deadline flows in switches and routers.

As middleboxes are being introduced to various networks, including
data centers (Joseph et al., 2008). In data center networks, load
balancers and SSL offloaders are deployed for fast packet processing.
These new coming appliances provide not only efficiencies but also new
challenges for management. Both traditional methods and new archi-
tectures are proposed by prior researchers (Joseph et al., 2008; Qazi
et al., 2013). Combing the middlebox management and latency
management is of great challenge and critical value. Motivated by
NFV technologies, we try to solve these two problems with a single
management framework in Quokka.

3. Middlebox processing delay model

Our network environment is based on SDN, where there are four
types of nodes: the controller, the switches, the hosts, and the resource
pools. The resource pool is generally a multi-core server running a
limited number of diverse middleboxes. To avoid the overheads of non-

Q. Li et al.

treonine | (D (D - (D
pEETETEY
@) 4
Pro;g(s)iing {workerOJ {workerl}. . { worker £, }
L1
O;zslllt [Dkt H pktl J . [Pkt Ay J

)

Fig. 2. The Middlebox Model with Multiple Workers.

uniform memory access (NUMA), we assume that a core is dedicated to
a single middlebox (Mohammadkhan et al., 2015). Each link between
nodes has a fixed transmission delay. The total delay of a packet
includes the processing delay of middleboxes and the transmission
delay of links in its path. In design of Quokka, to simplify the problem,
we assume the link forwarding speed is much higher than the total
processing speed of the pool. Accordingly, we fix the link transmission
delay without considering the change caused by link queuing, as the
inaccuracy is acceptable compared with the processing delay of
middleboxes.

3.1. Model overview

We model the middlebox as a multiple-processor system with K,
processing units, called as workers. The packets arrive at the rate of
Ry The middlebox schedules the K, workers to process the arrived
packets in the incoming pool. The middlebox model is shown in Fig. 2.

This model is motivated by some engineering backgrounds and
previous works (Anderson et al., 2012; Ghodsi et al., 2012). xOMB
(Anderson et al., 2012) is a general software middlebox framework. In
xOMB packets or flows are buffered in queue and then scheduled to be
handled by processing servers or units, which is consistent with the
model we described above. When scheduling the processing units to
deal with queued packets, we adopt a similar resource management
technology as in Ghodsi et al. (2012) to schedule packets impartially in
the processing units. In our model, we simply process packets in a
First-Come-First-Service (FCFS) discipline. And each packet possesses
a single processing unit during the manipulation.

To analyze packet delay in software middleboxes, an M/M/c model
is employed in Abdou et al. (2015), and we extend it in this paper.
Furthermore, the serving behaviour in our queueing model is more
complex, as we consider diverse software middleboxes. Therefore, we
adopt two queueing models according to different processing beha-
viours of packets: Deterministic Model and Exponential Model.

In the Deterministic Model, the processing time of a packet is
constant, not exponentially distributed as in Abdou et al. (2015). This
is based on the fact that some middleboxes, for instance, proxies,
firewalls, only process packet headers with fixed size. However, other
middleboxes, like intrusion detection and prevention systems (IDS),
process the whole packet, including the payload. If the data length is
distributed exponentially, the serving time follows the Poisson
Distribution. We use Exponential Model to analyze these kinds of
middleboxes. In Abdou et al. (2015), the authors only employ
Exponential Model, while both models are employed in this paper to
formulate various middleboxes.

Subsequently, we will explain the two models in details. Before that,
we give some definitions: (1) waiting time, denoted with W, is the time
a packet queues in the incoming pool; (2) processing time, denoted
with T, indicates the time required to process a packet by the

255

Journal of Network and Computer Applications 78 (2017) 253-266

processing unit without queueing. In the Deterministic Model, the
processing time is constant, while in the Exponential Model it follows a
Poisson Distribution; (3) response time S, also called sojourn time, is
the sum of waiting time and processing time.

3.2. Deterministic model

In the Deterministic Model, T is the fixed serving time without
queueing. Let C,;, = % be the processing capacity of the middlebox.
According to our model, the real processing rate (ProcRate (R,y)) of the
middlebox can be computed by Eq. (1). Because one worker can handle
a single packet at the same time, when R, < C,,;, the processing rate is
Rpk, and the delay is T; when R, > C,, the incoming packets queue
and are processed by the workers in the FCFS order. For the latter case,
we compute the total delay of the packet according to the queueing
theory.

Rpk’
Cmb>

Rpk < Cpp

ProcRate (R,) = {
else

(€))

In this model, each host generates packets by Poisson Distribution
P (%), and the arrival rate of all packets from n independent hosts
follows the distribution of P (%), where 4, = n;. Thus, the queueing
model of this problem is M/D/c, a classical model in queueing theory
(c = K, and D=T). The distribution of waiting time is provided as Eq.
(2) (Gross, 2008).

K,
/‘[2 4 tK,,—l

7(K DI e~ dt
P - .

Fr=PWso= ["Fa+x-1
0 (2)

where Fyy-and P are the distribution and density function of waiting
time W respectively. It can be further expressed as a piecewise function
alternatively. As the following Eq. (3) shows, when x € [mD, (m + 1)D],

Kp—1 n, -, —1-
Fyx)=P(W<x)= IZ Age ﬁ: (= (x — kD))*+DE—1 nclz(x—kl))
- n! ((k+ DK, -1 —n)!
n=0 k=1 P

6))]

In Deterministic Model, the processing time of a packet, T, is

constant. Suppose Fg is the distribution function of response time S.
We have

Fsx)=P(S<x)=PW<x-T) @

Suppose that the upper limit of response time in a middlebox is y.
Quokka guarantees the quality of transmission service by controlling
the response time by a upper bound probability n according to Eq. (5).

PS>m=1-K@) <n ()

If flow behaviours (described by A;) and middlebox behaviours
(described by K, and T) are predefined, the processing delay of a
middlebox is determined by the flow number n only, and we can solve
Eq. (5) to get a maximal flow number. As for a chain of middleboxes,
the distribution in Eq. (5) becomes the joint distribution of all the
middleboxes in the service chain. Since we regard all the middleboxes
are independent in states, the distribution can be expressed as Eq. (6).

I1

xi=x \ 0<xi<x

i (6)

where k is the length of the service chain, i.e., the number of
middleboxes in this chain.

F™ (x) = Fx)

M=

3.3. Exponential model

In Exponential Model, both the arriving time and serving time
follow Poisson Distribution. In this subsection, we use similar symbols
to those in Deterministic Model.

Suppose that T follows a Poisson Distribution P(u), where

Q. Li et al.

E(T) = u. Still, each host generates a P (1) flow, and n flows combines
into a P(4) Poisson Distribution, where 4, = n;. According to our
model, the packets are served in the FCFS manner, thus the queueing
model is M/M/c, which has also been deeply researched. We will give
some properties of this model without detailed derivations, as they can
be directly found in many queueing theory textbooks (Gross, 2008;
Allen, 1978; Adan and Resing, 2002). Assume that the occupation rate
per processing unit is p = :—2 The distribution of waiting time W is as
Eq. (7) (Gross, 2008).

Fy(x)=PW<x)=1- P(W> x)

Z (éﬂ.)

Similar to Deterministic Model, we can get some properties for
response time S. However, T is not a fixed value in Exponential Model,
but follows Poisson Distribution P (u). Referring to results from Adan
and Resing (2002), we have

—1- (c/}) (éﬂ))7 —cu(1-p)x

&)

(cp) (Cﬂ))

Ex)=PS<x)=1—-e"—

) Z (Cﬂ)

e~CH(=p)x _ o=px

I-cl-p) (8)

By the same technologies with the Deterministic Model part, we can
get similar equations like Egs. (5), (6).

4. Problem formulation

In Quokka, we choose to minimize the number of required NFs
(middleboxes) with the constraints of flow requirements. We believe
this is an energy-efficient approach. Besides, in a cloud providing
virtual network service for enterprises, generally the middleboxes of
each virtual network (VN) must be isolated from other VNs. In this
scenario, minimizing the number of middleboxes in each VN can save
the resources to support more VNs running on the physical infra-
structure.

4.1. Problem with the uniform latency requirement

We first discuss the scenario where all the flows have the same
upper limit latency. The problem is defined as following: given the
topology, the traffic distribution and the maximal delay restriction,
deploy the minimized number of middleboxes at the proper positions
and schedule the traffic accordingly.

Let src and des be the source and destination of a flow. A flow is
described as a triple (src, dst, (MB,, MB,, MB,)), which means the flow
from src to dst should be processed by middleboxes of type a, b and c in
order. Let FList be the traffic flow list of a network. Let PoolNum be the
number of resource pools for middleboxes in the network. Each pool
can run N middleboxes at most. Let vector pl be a middlebox placement
solution, where pl[i] denotes the ith pool. Let MBSer (pl[i]) be set of
middleboxes in pl[i] and MBNum (pl[i]) be the number of middleboxes
in pl[i].

Based on a specific solution of pl, Quokka chooses an optimal or
near-optimal path for each flow. The selected path is called Minimum
Delay Path (MDP). links(f) and mbs(f) denote the sets of links and
middleboxes that flow f's MDP contains respectively. Let FNum(m) be
the number of MDPs passing through middlebox m. The processing
delay of m is Delay (FNum (m)), and the delay for link [is Delay(l). Let y
be the maximal acceptable flow latency. 7 is the threshold to limit the
probability of packets exceeding the maximal delay. For example,
n = 1% means less than 1% of the packets' latency is larger than y.
The problem can be formalized as:

Journal of Network and Computer Applications 78 (2017) 253-266

PoolNum
> MBNum(pl[i])subjectto ¥ i € [1, PoolNum]:
i=1

MBNum (pl[i]) < NV f € FList:

min.

P(Sy + Suy > 7) <nwhere Sy = Y. Delay()Su
I€links (f)
= Z Delay (FNum (m))

)

The sum of the link delays, Sjz, is a constant for a certain flow MDP.
S is the sum of the middlebox processing delays. The processing
delay Delay (FNum(m)) of middlebox m is related to the number of
passing MDPs. Therefore, to compute P(S; + S,,, > 7), we have to solve
the joint distribution of the middleboxes' processing delays, which is
infeasible because of the complexity.

According to Section 3, packets arrive at a given middlebox by
Poisson Distribution. Let E,,(FNum(m)) the expected delay time of
middlebox m. We then transform P(Sy + S,, >7) <n into
S + Zmembsw E,(FNum(m)) <y. We set an upper threshold Max,,,
for FNum(m), where Max,,, is related to the status of m and y. As
FNum (m) < Max,,>E,,(FNum(m)) < E,,(Max,,),

membs (f)

Z E,Max,) <y = Z Delay (1)
membs (f) lelinks ()

> E.(FNum(m)) <y
membs (f)

Y Delay(l) +

1€links (f)

+
(10)
Therefore, this problem can now be simplified as:

PoolNum
Z MBNum (pl[i])subjectto V i € [1, PoolNum],
i=1

m € MBSet (pl[i]): MBNum (pl[i]) < N,

FNum(m) < Max,, V¥ f € FList : Z Delay(l) +
IElinks ()

min.

Y En(Max,) <y
membs (f)

an

This is a combinatorial optimization problem. To analyze the
complexity, we consider a sub-problem of MDP computation: given a
middlebox placement solution, find the MDP for a given flow with the
rate of O(n). This sub-problem is NP-Complete when the maximal
latency is polynomially large (Edmonds and Karp, 1972). Therefore,
computing MDP is weak NP-Hard. The whole optimization problem
itself is actually at least a weak NP-Hard problem.

4.2. Problem with different latency requirements

In the real networks, different flows of various applications may
have different latency requirements. This scenario is a general version
for that with the uniform latency requirement.

Let y(f) be the latency threshold of flow f. The optimization
problem can be formulated as Eq. (12):

PoolNum
Y. MBNum(pl[i])subjectto ¥ i € [1, PoolNum]:
i=1

MBNum (pl[i]) < N V f€ FlList:

min.

Z Delay(l) S
lelinks ()

Z Delay (FNum (m))
membs (f)

P(Si + Spp > }’f) < nwhere Sy =

(12)

This problem can be transformed into Eq. (13). The form of this
expression is analogous to Eq. (11). However, there is a significant
difference between them: flows are with different latency requirements,
which brings additional challenges to the algorithm design. For a
latency-insensitive flow f, the latency threshold y (f) can be set as a
large constant in the implementation.

Q. Li et al.

PoolNum
> MBNum(pl[i])subjectto ¥ i € [1, PoolNum],
i=1

m € MBSet (pl[i]): MBNum (pl[i]) < N,

FNum (m) < Max,, V¥ f € FList : Z Delay () +
I€links (f)

min.

Y E,(Max,)

membs (f)

<7 (13)

5. Algorithm design

In this section, we design algorithms to solve the two problems of
last section. We first design the basic algorithms for the uniform
threshold problem, and then make some adjustments for the general
one.

We now present the algorithm MBSchedule(G, FList, y) as shown in
Algorithm 1 to solve the above combinatorial problem. G and FList are
the given topology and traffic list respectively. y is the upper limit of the
total latency that can be accepted for packets. In our approach, flow
scheduling and MB positioning are decoupled. MBPosition
(KLevelVoting) is used to find a solution of MB position, where the
MBs are redundant to a certain extent. Therefore, for a relatively long
interval, the solution of MB position does not need changing. The
traffic flows are scheduled based on these MBs during the interval by
the algorithm of MDPSolution (MaskedViterbi).

Algorithm 1. MBSchedule(G, FList, y).

MBNumlist. init ()
while true do
pt=MBPosition(G, FList, MBNumlLst)
solution=MDPSolution(G, FList, pt, y)
if solution accepted then 1> all flow latencies satisfied
return solution
end if
MBNumLst = MBNumLst. adjust (solution)
if MBNumLst==null then
return Error: insufficient pools
end if
end while

CREIIPHEENE

e
— O

—_
»

This algorithm is efficient as a general framework for various flow
patterns. Following, we will first give basic algorithms to solve the
scheduling problem in enterprise networks. Then, we will adapt the
basic algorithms for the scenario of data centers.

Given the topology G, the traffic list FList and the upper limit of the
total delay y, Algorithm MBSchedule first initializes the numbers of
different types of MBs. Then, the first stage algorithm called
MBPosition, is used to generate a possible placement solution of
middleboxes. If no feasible result is returned, an error message is
generated, which means y is too small for the corresponding topology
and traffic list. Based on the feasible placement result, the second stage
algorithm of MDPSolution computes the optimal MDPs for all the
flows. If the result of solution returned by MDPSolution cannot be
accepted. In this case, the number of middleboxes should be increased.
In our algorithm, we prefer to increase the number of the MB type with
a higher load in MBNumlLst.

In the following part of this section, we give the approximated
optimization algorithms of the two stages. MBPosition is solved by a k-
level voting algorithm and MDPSolution is solved by a masked-Viterbi
algorithm.

5.1. K-level voting algorithm for MB placement

In k-level voting algorithm, we simulate k rounds voting to select

257

Journal of Network and Computer Applications 78 (2017) 253-266

the candidate pools for middlebox deployment. During voting, we
maintain a score table for each <pool, MBtype> pair. In each round, all
flows vote for all the <pool, MBtype> pairs according to the service
chains and candidate pools. Temporary candidates are selected after
each round of voting. The voting process is incremental, and new
candidates are selected based on the sums of voted scores and old
candidates in the past round.

Algorithm 2 shows the details. G. plist is the pool list of topology G.
In the algorithm, we first initialize scores and candidate, then we
employ k rounds voting (scores. vote()) and selecting
(candidate. select()). We optimize the candidate positions in each
round.

Algorithm 2. KLevelVoting(G, FList, MBNumlList).

1: init scores and candidate

2: forie(l, k] do

3: for all f € FList do

4: for all p € G. plist do

5: MB,=f. chainli]

6: if i==1 then

7: PreHops = {f. src}

8: else

9: PreHops = candidate [f. chain[i — 1]]
10: end if

11: for all pre € PreCands do

12: scores. vote(< p, MB, > , 1/In(dist (pre, p))
13: end for

14: end for

15: end for

16: candidate. select (scores, MBNumList)

17: end for

18: return candidate. finalresult ()

Suppose the longest service chain of all flows contains k middle-
boxes. V f € FList, let f. chain be the service chain of f. In the first
voting round, each flow f votes for the first middlebox type
(MB, = f. chain[1]) in its service chain. The set of potential previous
hops of f is PreHops = {f. src}, where f.src is the flow source.
VpeG. plist, f votes the pair <p, MB,> with a score
1/In(dist (f. src, p)), where dist(x, y) means the transmission delay of
links from x to y. In the function of scores. vote, 1/In(dist (f. src, p)) is
added to the score of the pair of <p, MB,>. Then, according to the voted
scores, m,. (determined by MBNumLst) pools are selected as candidate
positions for the MB type of MB,,.

In the second round voting, PreHops changes to be set of the
candidate pools (positions) for the first MB type in the service chain of
f. Because the score is computed according according to the dist from
the previous MB hop to the current pool. f needs to vote for its second
middlebox type based on all candidate positions of the previous (first)
MB type. The score for each pair <p, MB,> will be accumulated by
voted scores in the second round and candidate pools will be re-
selected. The remaining k — 2 rounds follow exactly the same principle.
Finally, each type of middlebox has a score related to each pool. We
generate the placement solution by choosing the top scored pools for
each type of middleboxes accordingly, while the pool resource restric-
tion (the capacity) is also considered here.

Algorithm KLevelVoting is in fact a greedy method. In each round,
based on the previous scores and candidates, the algorithm votes and
selects current candidate positions. The smaller dist (pre,p) is, the
bigger score <p, MB,> will get.

5.2. Masked-viterbi algorithm for MDP and feedback

MaskedViterbi is employed for MDP computation, and it has two
stages: in the first stage, we compute the minimum possible delay

Q. Li et al.

(stored in MinDelayList) for each flow and reorder the flows according
to MinDelayList; in the second stage, we find the MDP for each flow by
the improved Viterbi algorithm (impViterbi).

Algorithm 3. MaskedViterbi(G,FList,pt,y).

1: for f € FList do > Stage 1: line 1-5
2: mindelay = Viterbi (G, pt)

3: add mindelay to MinDelayList

4: end for

5: rank FList by MinDelayList

6: for f € FList do > Stage 2: line 6-21
7: init mask by the current loads of MBs

8: mb=ImpViterbi (G, pt, mask)

9: while mb is None do

10: mask. pop ()

11: mb=ImpViterbi (G, pt, mask)

12: end while

13: mdp. append (mb)

14: if mdp satisfies the latency requirement of f then
15: add mdp into solution

16: else

17: return solution with a feedback

18: end if

19: end for

20: return solution

In the first stage, assuming that each middlebox can handle infinite
flows and the processing latency is fixed, we compute the minimum
possible delay for each flow. This is a multiple-stage shortest path
problem, which can be solved by the Viterbi algorithm (Viterbi, 1967).
In this problem, each type of middleboxes make up a stage, and the
types in a service chain are combined sequentially into a multiple-
stage. Here, we should find a shortest path that crosses the stages in
series. Viterbi can solve this problem via dynamic programming.
impViterbi is the improved Viterbi algorithm. Actually, it has no
difference with mask except some initialized operations like removing
the highly-loaded MBs in the set of mask.

The re-sorting of flows is a critical step in our algorithm. If a flow
has a larger minimum possible delay, it is more difficult to find a
solution for the flow. Thus, we let the flow with a larger path
transmission delay choose NFs before the smaller one. Thus, from
the global aspect, we can restrict the maximum delay. After obtaining
the minimum possible delays, we rank the flows from long delay flows
to short ones (in line 5).

In the second stage, taking the flow number restriction into
account, we compute the real MDPs for the flows in the ranked order.
mask is the set of all highly-loaded MBs during the computation and
MaskedViterbi skips MBs in mask when choosing paths. In this way,
we avoid adding flows to those MBs that are close to overloading. If
impViterbi fails to find a satisfied MDP for the flow, we pop a MB with
the smallest workload from mask for re-computation. Multiple times of
re-computation by impViterbi may be triggered for a feasible solution.
If we still cannot find the latency-bounded MDPs for all flows, a
feedback will be returned to adjust the middlebox number list
MBNumlList. For each MB type MB,. in the flow's service chain, the
feedback includes the workloads of MB,, which is used in the next
iteration of MBSchedule to adjust the MB numbers.

As formulated in Eq. (11), we maximum number of flows that MB
m can handle is Max,,,. When the flow number of m exceeds 0.9-Max,,,
we consider m is overloaded, and should be added to mask. Max,,, is
referred to a pre-built table determined by the joint distribution in Eq.
(6) and the delay threshold y. To avoid the complex computation of Eq.
(6), instead of directly building the table, we randomly choose some
engineering values in a reasonable range, check if latencies are
satisfied, and insert satisfying values into table.

Journal of Network and Computer Applications 78 (2017) 253-266

Considering the problem of dynamic chain in Mohammadkhan
et al. (2015), MaskedViterbi algorithm can be extended to compute the
path with branches (one iteration for one branch starting from the
common node). Inspired by Mohammadkhan et al. (2015), we solve the
potential ambiguity problem of dynamic chain by tagging the packet for
each branch, which is similar to the part of handling header changing
NFs in Mohammadkhan et al. (2015).

5.3. Online algorithm for dynamic flows

The above algorithms provide solutions for the static version
problem. However, the traffic is dynamically changing, which makes
the problem more complex.

The migration of flow states between NFs is always a significant
challenge in the dynamically changing network. It may affect the delay
sensitive flows because of the latency caused by the migration.
However, as it is not the main concern in our paper, we only provide
two methods to avoid the migration of flow states as much as possible.
(1) In our implementation, we set an updating interval (for example,
ten minutes). During the interval, the deployment of middleboxes will
not change. The scheduling of a new flow is solved incrementally by the
iterative algorithm of MaskedViterbi without impacting the existing
flows. (2) In our scheme, each pool can run N middleboxes. The sates in
the same pool are shared among all the running middleboxes. If one
middlebox is shutdown, we prefer moving the flow states to another
middbox of the same type. In this case, state migration can also be
avoided.

The scheduling of a new flow is solved incrementally by the iterative
algorithm of MaskedViterbi without impacting the existing flows. In
our experiment on a server with an Intel Xeon 2.6 GHz dual-core
processor, the computation for a new flow is less than 1 ms (without
taking the communication latency into account), which means compu-
tation overhead of the algorithm itself is acceptable.

The significant contribution of our algorithm lies in the fact that it
can be directly employed for the online dynamic scheduling, as it is an
incremental algorithm. To avoid impacting general forwarding, in
online version algorithms, we set an updating interval (for example,
several minutes) during which the deployment of middlebox should be
invariant, together with the determined forwarding paths. And the
newly arriving flows during this updating interval can be handled
gently altogether, as voting and MDP computation are done flow by
flow.

5.4. Algorithms with different latency requirements

The above algorithms can solve the problem with the uniform
latency requirement. However, in data centers, latency-insensitive
flows and latency-sensitive flows should be scheduled with different
priorities.

In the basic algorithms, flows vote the resource pools with a score of
___ 1 . In data center networks, we want short latency flows to
In(dist (f.src,p))
have stronger voice. To do this, we replace the score with

L Thus, the latency-sensitive flows have a higher score
In (yf) + In(dis(f.src,p))

than latency-insensitive flows when voting the same resource pool at
the same middlebox candidate position.

At the first stage of MaskedViterbi, we calculate the MDP without
any processing delay, and re-sort the flows by these MDP values. The
larger the value is, the more likely the final latency exceeds the
threshold. But for flows with different latency requirements, we should
take yrinto consideration. Let mdpsbe the value calculated in the first
stage, we sort the flows by W (while in the original MaskedViterbi,

we sort the flows by %). The flows f with smaller ys are placed in a
mdpg

earlier position in the new order. At the second stage of MaskedViterbi,
flow f shall have more choices when choosing paths, because its priority

Q. Li et al.

SDN Controller

Resource Controller

-~ /'\ .
o” | ~
i ~
> [~
Fog ~
e | L
Zd ~N
Resource Pool. Resourcé Pool Resqurce Pool
o~ | N =
Resource Resource Resource
Agent Agent Agent

Fig. 3. Resource management framework.
is higher than the flow f’ with larger y;.
6. Implementation framework
6.1. Framework design

In the traditional cloud platforms (Zhang et al., 2014; Schwarzkopf
et al., 2013; Verma et al., 2015; Hindman et al., 2011), the manage-
ment of computing resource (like cpus, memories) is separated from
the management of latency. However, with more and more middle-
boxes deployed, the latency behaviour of flows is highly tied with the
resource management. To combine them together, we build a frame-
work to manage both the computing resource (resource pools) and flow
latencies. This management framework can be either built as a module
in the traditional resource manager or an application in the SDN
controller. Due to limited number of servers and requirement of fast
resource allocation, we choose to implement our own resource
manager in the SDN controller, which is shown in Fig. 3. This
framework consists of a resource agent in each physical machine and
a resource master. In each server, we run a resource agent, which is
used to report resource utilization and allocation status periodicity to
the master. We implement the resource master as an underlayer
module in the SDN controller and it can be callable by other SDN
controller applications.

This resource management framework mainly provides two func-
tions: (1) resource monitor and allocation; (2) fault-handling. The
resource agent reports (called register) the up-to-date resource states
to the master when changes happen. Then, the master records the
resource updates for future usage in the middlebox scheduling. After
the calculation of middlebox deployment, the master sends the alloca-
tion commands to the resource agents (called alloc), which allocate the
resource for middlebox software directly according to the commands.
The process of the two actions is shown in Fig. 4.

6.2. Northbound API

Based on these functions, we provide some APIs to network
operators for high-level usage.
e addMB(flowLst, typeLst, latencyLst): add the minimum number of
middleboxes of types in typeLst, to restrict the latency of flows in
flowLst to corresponding latency in latencyLst. By default, flowLst
contains all the flows in the network, and typeLst contains all the
middlebox types. If there are no solutions, False will be returned.
delMB(flowLst, typeLst, latencyLst): if the middleboxes are over the
provision, we may need to decrease the number of middleboxes. The
parameters are the same with addMB above. During this process,
APIs of NFV/SDN platforms like OpenNF (Gember-Jacobson et al.,
2014) maybe called to merge and migrate flows.
optAdd(flowLst, typeLst): automatically add middleboxes with the
types in typeLst for the flows in flowLst to achieve best-effort latency
behaviour. Quokka will run KLevelVoting-MaskedViterbi round by

Journal of Network and Computer Applications 78 (2017) 253-266

SDN Controller

.\%&3
7
e x\&% /OC\
Agent Agent
Proxy0 Proxyl IDSO Idle
Idle Idle Idle Idle

(1) register: the agent reports that 1 slotis available
(2) alloc: notify the agent to allocate an IDS

Fig. 4. Main Actions of Resource Framework.

round. The algorithm will be terminated when less than 5%
improvement achieved in the last round.

minNumDeploy(flowLst, typeLst, latencyLst): this API calculates
the minimum number of middleboxes we need to restrict delays to
latencyLst for flowLst. If no solutions, False is returned. Otherwise,
the API returns this minimum number.

minLatency(flowLst): this API returns the universal latency thresh-
old for all the flows in flowLst with all available resource pools in the
network.

These APIs provide some basic high-level functions to network
operators. They can be used to deploy various MB instances in available
resource pools automatically.

6.3. Fault handling

To handle the faults of resource pools, we propose a two-level fault-
handling mechanism. First, the master keeps the up-to-date agent
states by a heart-beat protocol; second, each agent monitors the status
of VMs in its resource pool. When the heart-beating between the
master and the agent fails, the master marks the corresponding agent
as failed. Then the master re-launches the middleboxes, and re-
configures the network to redirect the flows to the new middleboxes.
When the agent detects the failure of a VM in the resource pools, it
reports the event to the master. It is the master's business to decide
whether the agent should re-launch the middlebox in the original
position.

We also develop a blacklist scheme to avoid frequent failures in
some conditions. If the failure times of a VM exceeds a threshold, the
master adds the pair (middlebox type, resource pool) to the blacklist.
In the future, this type of middleboxes will not run on this resource
pool.

7. Experiments

In this section, we evaluate the performance of our algorithms by
comprehensive experiments. Based on diverse enterprise and ISP
topologies, we explore the flow latency and resource utilization
efficiency. During the experiments, some northbound APIs are directly
used. In the following part, we will first present experiments of basic
algorithms with enterprise flow pattern. And then, we will discuss
experiments with different latency requirements.

Q. Li et al.

Table 1
Experiment topology properties.

Name Switch End Node Edge Source
FatTree(k=16) 320 1024 4096 Custom
CERNET(2006) 41 410 116 Topo. Zoo
CARNET(2010) 44 440 86 Topo. Zoo
AS2914 70 700 222 Rocketfuel

7.1. Simulation setup

Our works focus on scheduling algorithm and should be imple-
mented as an application in the SDN controller. Quokka can be
adopted directly in real production environment, cooperating with
the NFV/SDN platform like OpenNF, which provides infrastructure
APIs for virtual middlebox management. To explore scheduling
problems in large scale and complex networks, we have written an
in-house tool for simulation usage. The project is implemented by
Python, which can be found on GitHub (Quokka Project,). In the
following experiments, Quokka is deployed on a controller server with
an Intel Xeon 2.6 GHz dual-core processor and 4 GB ram running linux
kernel 3.10.0.

We employ FatTree (Al-Fares et al., 2008), China Education and
Research NETwork (CERNET) (Knight et al, 2011), Croatian
Academic and Research NETwork (CARNET) (Knight et al., 2011)
and Rocketfuel AS2914 (Teixeira et al., 2003) as our experiment
topologies. Table 1 concludes the topology properties. We generate
10 end nodes (randomly set as resource pool or host) for each node.

We generate enterprise flows based on the real data of enterprise
traffic behaviour (Nechaev et al., 2010). There are four types of flows,
as shown in Table 2. Herelong and short describe flow duration;small
and large describe flow size. Averagely there are 2 K flows at the same
time. For a specific type of flows, Prop. means the proportion of flow
number in total flow number, while Size means the size proportion in
summed size of all flows. Med. Rate is the median rate of flows.

Then, according to statistical results from Nechaev et al. (2010), we
generate the traffic traces of some common network applications (e.g.,
ssh, NFS and Dantz), and configure the middlebox service chains
referring to our campus network. To show the efficiency of Quokka, we
also implement two traditional schemes for comparisons.

1. Fixed placement and fixed configuration (Fixed-Fixed): we deploy
fixed number of middleboxes in fixed pools, and when a flow is
generated, Fixed-Fixed sends it to the nearest middleboxes. This
scheme is usually used in traditional networks to manage hardware
middleboxes.

. Load balancing with fixed placement (Fixed-LB): Fixed-LB deploys a
fixed number of middleboxes and load balance the traffic among
them online, analogous to Simple-fying (Qazi et al., 2013).

In the implementation of Quokka, we initialize the number of a
specific MB type (MB,) according to assumed capability of MB, and
the number of flows with MB,.. For example, if there are 1 K flows with
MB,, in their service chains and each MB, can handle 500 flows
simultaneously, the initiate number of MB, is set to be 2. The total
initiate number of MBs is a multiple of 5 (the number of MB types).

Table 2
Enterprise flow categories and properties.

Dur.-Size Prop. (%) Size (%) Med. Rate (bps)
Short-Small 57.2 0.6 500 K
Short-Large 2.6 0.8 10M

Long-Small 31.8 0.8 10K

Long-Large 8.4 97.8 100 K

260

Journal of Network and Computer Applications 78 (2017) 253-266

After each round of KLevelVoting-MaskedViterbi, we add a certain
number (i.e., 5 in our implementation) of MBs according to the load of
each MB. We prefer to increase the number of the MB type with a
higher load. For more implementation details, please refer to our
project on GitBub (Quokka Project,).

7.2. Experiments results and analysis

Quokka is a scalable and efficient scheduling algorithm, as it can
add or remove middlebox instances when the network load changes.
Fig. 5 shows the cumulative distribution of flow latencies of Quokka
with three KLevelVoting-MaskedViterbi iterations. During each itera-
tion, Quokka adds new middleboxes in the positions according to
KLevelVoting and reschedules the flows using MaskedViterbi
Algorithm. Finally, Quokka decreases the flow latencies as the Fig. 5
shows. In (a), (b) and (c), the curve between 40 and 60 ms is because of
the topology property, especially the transmission delays between the
sources and destinations. These three topologies have the similar
features in this aspect.

This experiment shows that, Quokka can dynamically change the
number of middleboxes with respect to processing workloads. The
number of middleboxes changed in each iteration is simply calculated
with traffic requirements. In our experiments, the iteration process
converges very quickly. For most topologies, three iterations are
enough. And this makes Quokka very computing-friendly.

With the same number of middleboxes deployed, we apply Fixed-
Fixed, Fixed-LB and Quokka in the controller respectively. As shown in
Fig. 6, Quokka has smaller flow latencies. In AS2914, Fixed-LB works
even worse than Fixed-Fixed, as AS2914 contains links with large
latencies. In this type of topology, link transmission delay mostly
contributes much more to the total latency than middlebox processing.
This is a problem existing in the traditional load balancing. Quokka
avoids this problem, thus is always very stable in diverse topologies and
achieves overwhelming performance.

It is seen from this experiment that, Quokka receives better latency
performance over both nearest choice (Fixed-Fixed) and simple load
balancing (Fixed-LB). Fixed-Fixed only chooses the nearest middle-
boxes, and it makes some instances overloaded. As overloaded mid-
dleboxes need longer time to process packets, the flows across it may be
delayed. Even though Fixed-LB utilizes load balancing technologies to
avoid overheated situations, it may lead flows to faraway instances.
Instead, Quokka seeks the balance between nearest position and
middlebox burden when scheduling flows. Alternately as shown in
Fig. 6, Quokka is very efficient in shortening long-tailed flows, which is
significant for delay guarantee.

Furthermore, we calculate latency reduction ratio Quokka achieves
over other two schemes. We first calculate the average latencies of all
flows during the experiment, and then get the ratio reduced by Quokka
over Fixed-Fixed and Fixed-LB. The results are shown in Table 3. From
the experiment, we see that Quokka reduces about 20% of latency over
the traditional schemes on average.

In the first three topologies, Fixed-Fixed works even bad, as it has
the disadvantage of at least 20% compared to both simple load
balancing and Quokka. It is because the nearest choice method makes
many middleboxes overhead, and thus performs poorly. Still, in the
first three topologies, Quokka performs 4-8% better than Fixed-LB.
However, in AS2914, the performances of Fixed-Fixed and Fixed-LB
are reversed. As explained above, AS2914 is a complex ISP networks
across various countries and cities, and it has many long latency links.
For such reason, simple load balancing may bring extra delays similar
to the toy example in Fig. 1. In this topology, up to 43% of performance
improvement is achieved by Quokka, compared to traditional load
balancing.

When given a max delay restriction, we apply these schemes to
provide delay guarantees. For each algorithm and each topology, we
carry out our experiment for 5 times. If the delays are restricted for at

Q. Li et al.

RN

Journal of Network and Computer Applications 78 (2017) 253-266

5 08 5 08
O O
> >
© 06 & 06
L L
5 04 8 04
2 —& 1st-Iter(10 MBs) 2 —&1st-Iter(10 MBs)
2 0.2 -7-2nd-lter(15 MBs) 2 0.2 -72nd-lIter(15 MBs)
—0—3rd-lter(20 MBs) L —0—3rd-lter(20 MBs)
40 60 80 100 20 40 60 80 100
Latency/ms Latency/ms
(a) FatTree: K=16 (b) CERNET
1 3090 Ou0 1
4 08 5 08
(@) O
> >
g 0.6 g 0.6
2 L
® 04 8 04
2 —& 1st-Iter(10 MBs) 2 —&1st-Iter(10 MBs)
u% 0.2 - 2nd-lter(15 MBs) 2 0.2 - 2nd-lter(15 MBs)
0 —0-3rd-lter(20 MBs) —0—-3rd-lter(20 MBs)
20 40 60 80 100 0 100 150 200 250
Latency/ms Latency/ms
(c) CARNET (d) AS2914

Fig. 5. Latency Distributions of Quokka with Three Iterations. (a) FatTree: K=16 (b) CERNET (c) CARNET (d) AS2914.

least 4 times, we regard the delay is guaranteed. Otherwise, we think
the maximum delay threshold is violated by the corresponding algo-
rithm. In fact, only Fixed-Fixed method cannot guarantee the 120 ms
delay in FatTree(k=16), and this is denoted as a * symbol in Table 4.
Other experiments are all successful in restricting delays for 5 times. In
most cases, Quokka reduces the resource usage by 30—50%, compared
to other two schemes.

Table 3
Delay reduced ratio .

FatTree CERNET CARNET AS2914
Quokka/Fixed-Fixed 35.0% 35.1% 25.8% 4.28%
Quokka/Fixed-LB 4.28% 8.36% 8.49% 43.3%

& 0.8 L 0.8
(@] (@)
3 0.6 3 0.6
C c
] i)
® 04 1 & 04 1
g -8-Fixed—-Fixed CB) -8-Fixed-Fixed
r 02 -+ Fixed-LB i 02 -7 Fixed-LB
——Quokka ——Quokka
60 80 100 60 80 100
Latency/ms Latency/ms
(a) FatTree: K=16 (b) CERNET
L-0-08-6-2-2 1 A 0008000060000
5 5 08
(@] (@]
& 8 0.6
C c
2 2
« 1 ® 04 1
g -a-Fixed-Fixed g -a-Fixed-Fixed
o -+ Fixed-LB r 0.2 -+ Fixed-LB
——Quokka 0 ; ——Quokka
60 80 100 0 200 400 600
Latency/ms Latency/ms
(c) CARNET (d) As2914

Fig. 6. Latency Distributions of Three Algorithms(20MBs). (a) FatTree: K=16 (b) CERNET (c) CARNET (d) AS2914.

261

Q. Li et al.

Table 4
MB numbers needed to restrict delay.

Journal of Network and Computer Applications 78 (2017) 253-266

Table 5
Deadline mismatch ratio.

Topo. Delay (ms) Fixed-Fixed Fixed-LB Quokka Topo. Fixed-Fixed (%) Fixed-LB (%) Quokka-DC (%)
FatTree 120 * 15 10 FatTree 7.96 2.80 0.02
CERNET 110 20 15 10 CERNET 15.8 11.4 1.61
CARNET 920 15 10 10 CARNET 25.3 12.2 0.00
AS2914 450 20 15 10 AS2914 239 30.5 1.61
B Fixed-Fixed NFixed-LB =Quokka ments, and find Quokka-DC can greatly reduce the deadline mismatch

) &

(= (=

(= (=]
L

Min Latency Gauranteed/ms

FatTree

CERNET CARNET
Topologies

AS2914

Fig. 7. Minimum delay guaranteed by algorithms.

Given the same number of middleboxes, we then explore the
minimum possible delay each algorithm can provide. In the following
experiments, we evaluate these three algorithms, and find Quokka can
always provide smaller possible delay restriction than Fixed-Fixed and
Fixed-LB in diverse topologies. As shown in Fig. 7, in the first three
topologies, Quokka gets about 40% smaller delay threshold than Fixed-
Fixed, and slight smaller than Fixed-LB. In AS2914, Quokka achieves
obvious better latency performance than both static configuration and
simple load balancing.

The Long-Large flows consist of most of packets (97.8% in size), as
shown in Table 2, so setting an updating interval does not lead to
serious optimality drawbacks in the online version algorithm.
Experiments show that, static version algorithm and online version
achieve similar performances.

7.3. Experiments with different latency requirements

For the growing deployment of middleboxes in a wide range of
areas, we would like to extend our work for various flow patterns. In
this subsection, we do some experiments with different latency
requirements.

The flows in our experiments are based on the data center tracing
from Google Inc. and statistical results from Wilson et al. (2011),
Verma et al. (2015), Benson et al. (2010), Kandula et al. (2009). As the
tracing lacks middlebox information, we configure the flow service
chains according to their types (Benson et al., 2010). The latency
thresholds are determined by the observation experiences in Wilson
et al. (2011), Vamanan et al. (2012).

We have three type of flows according to their latency require-
ments: (1) real time flows (50%), which are usually critical user-
reactive requirements, and should be delivered in 150 ms; (2) soft real
time flows (10%), typical flows of this type are background refreshing
when we are surfing the websites. Their requirements are not very
critical as the first type, but still should be processed in 300 ms; (3)
none real time flows (40%), this kind of flows are usually long-time
running backup jobs or logging jobs. We set a threshold of 1000 ms for
this kind of flows. The distribution of the flows follow the statistical
results of Benson et al. (2010).

Given the same resource, we evaluate our algorithm (called
Quokka-DC) together with Fixed-Fixed and Fixed-LB to see whether
the latencies are guaranteed. We carry out several rounds of experi-

262

ratio. As shown in Table 5, Quokka-DC can always have less deadline
mismatch ratio than the other two algorithms in all these four
topologies. From Table 5, we see that, in most of times, Quokka-DC
only have less than one tenth mismatch ratio of that in Fixed-Fixed or
Fixed-LB. Only several flows cannot meet their completion times with
Quokka-DC. Especially in AS2914, both of the traditional methods
have a poor performance. This shows Quokka-DC can still work very
well in complex topologies, while simple load balancing and static
configuration cannot meet various topologies.

Like the measurement benchmark in enterprise networks, if an
algorithm can meet 99% more flow deadlines in 4 out of 5 experiments,
we think this algorithm can provide guarantees for this topology. In our
experiments, all of these three algorithms cannot provide guarantees
for AS2914, because their are no solutions for some flows. And in other
three topologies, Quokka-DC can provide guarantees within 20 MBs
with about 2 K flows, while neither Fixed-Fixed or Fixed-LB can
guarantee the deadlines.

In the experiments of enterprise networks, simple load balancing
approach sometimes provides a convincing performance. But in the
experiments for data center flow patterns, simple load balancing always
works poorly. Because many flows in data center pattern have more
critical deadlines than the flows in enterprise pattern. Data center flows
are generally more latency-sensitive than enterprise flows.

To show the flow latency distribution clearly, we ignore none real
time flows, and present real time flows and soft real time flows
separately. Fig. 8 shows the latency distribution CDF of real time flows.
Almost in all times, the CDF curve of Quokka-DC is above the other
algorithms, except 120 ms in FatTree. At that point, Fixed-LB works
slightly better. It may seem that Quokka-DC is not good enough at first
glance. However, the latency threshold of real time flows is 150 ms,
and 99.98% flows in FatTree can be restricted within this threshold
using Quokka-DC. While, only 97.2% flows can be guaranteed using
Fixed-LB. Simple load balancing employs some greedy method, while
Quokka can make a good plan for all the flows.

In CERNET and CARNET, at the beginning of x-axis, Fixed-Fixed
works better than Fixed-LB. However, after a specific point, Fixed-LB
begins to overcome Fixed-Fixed. As static configuration sends packets
to their nearest middleboxes, some flows can get good latency
performance. But there are much more flows sent to overloaded
instances and the total performance is very bad. Load balancing can
relieve this problem somewhat, but still not very good. In complex
topologies like AS2914, as we explained in enterprise networks, Fixed-
LB works even worse than Fixed-Fixed. On the other hand, Quokka can
always get noticeable performance improvement in all the four
topologies.

The distribution of soft real time flows is shown in Fig. 9. This
figure is similar to Fig. 8, except that the thresholds are different. If we
combine Figs. 8 and 9 together, we find our algorithm treats different
type of flows with different priorities. Quokka-DC tries its best to
provide according latency guarantees to different flows with limited
resource. Experiments show that Quokka can make a good balance of
latency requirements of various flows and limited computing resource.

According to our definition, there is only a universal threshold in
enterprise networks, while there are multiple thresholds in data
centers. With a single threshold, the algorithm just needs to allocate

Q. Li et al.

Journal of Network and Computer Applications 78 (2017) 253-266

1 1 4000
—&-Fixed-Fixed —&-Fixed-Fixed
& 0.8 |-+ Fixed-LB & 0.8] - Fixed-LB
I~ o ——Quokka-DC
3 0.6 3 0.6
[. c .
§) 2
5 04 04
g g
202 202
0 Lo oo ook ’ 0
0 50 100 150 200 0 50 100 150 200
Latency/ms Latency/ms
(a) FatTree: K=16 (b) CERNET
1 900609 1
—&-Fixed-Fixed —&-Fixed-Fixed
5 0.8~ Fixed-LB 77, & 08| Fixed-LB
I~ ——-Quokka-DC ; o ——Quokka-DC !
> > 7
Q06 ' o 06
o)
S 04 © 04
g g
202 2 02
0 50 100 150 200 0 50 100 150 200
Latency/ms Latency/ms
(c) CARNET (d) AS2914

Fig. 8. Latency distributions of real time flows (20 MBs). (a) FatTree: K=16 (b) CERNET (c) CARNET (d) AS2914.

the resource equally to the flows. Fixed-LB is also a equal algorithm.
However, some flows are very probable to have a longer latency, and
Quokka gives these flows higher priorities to avoid probable deadline
mismatch. When handling multiple thresholds, latency thresholds
should be considered altogether when choosing paths for different
flows. These are in fact what Quokka does compared to simple load
balancing and static configuration.

Even though enterprise flow pattern and data center flow pattern
are different, they share the same algorithm framework in Quokka.
This general algorithm framework can be used for diverse flow patterns
with different requirements of latency. In our experiments, we only
change serval lines of code when migrating the basic algorithms to
Quokka-DC. We believe our algorithms can be deployed in different
environments easily.

1] 1
G 08 5 08
(@] (@]
g 0.6 g 06
2 .
8 04 i S o4
2 —&Fixed-Fixed 2 -8 Fixed—-Fixed
202 ~7Fixed-LB 2 02 ~Fixed-LB
0lossd ——Quokka-DC 0 ya ——Quokka-DC
0 100 200 300 400 0 700 200 300 400
Latency/ms Latency/ms
(a) FatTree: K=16 (b) CERNET
1 100000800
G 08 5 08
(@] (@]
> >
@ 06 & 06
2 9
® 04 1 S 04
2 —&-Fixed-Fixed 2 -8 Fixed—-Fixed
£ 02 ~7-Fixed-LB Z2 02 7 Fixed-LB
0 ; ——Quokka-DC 0 I ——Quokka-DC
0 100 200 300 400 0 100 200 300 400
Latency/ms Latency/ms
(c) CARNET (d) AS2914

Fig. 9. Latency distributions of soft real time flows (20 MBs). (a) FatTree: K=16 (b) CERNET (c) CARNET (d) AS2914.

263

Q. Li et al.

7.4. Computing complexity

In our scheduling algorithm, loops of KLevelVoting-MaskedViterbi
often iterate at most 3 times. And in Algorithm KLevelVoting, the
number of global loops is Ikl-|FListlIG. plistl. k| is the length of longest
service chain and |G. plistl is the number of resource pools. In our
experiments, |kl is smaller than 10, and IG. plistl is about 200 at most.
Due to this, the number of loops is linear with respect to the number of
flows IFListl.

In each loop of KLevelVoting, we should calculate the shortest
paths between all switches. In our implementation, Floyd-Warshall
Algorithm (Floyd, 1962) is adopted to handle it. Its complexity of
O(IVP) where IVl is number of nodes in topology, and experiments show
this part contributes most to the computing complexity. However,
topologies of switches are stationary during the whole experiments,
and the shortest paths between pairs can be calculated in advance.
Even when resource pools (terminal nodes) change, the topologies of
switches keep stationary. Thus each loop in KLevelVoting executes in
constant time.

And in Algorithm MaskedViterbi, the number of global loops is also
linear with respect to flow numbers (as analyzed above, If. chainl should
be a constant; lmaskl is a small set of resource pools, and it is also a
small integer). And during each loop, Viterbi Algorithm is executed
once. As we mentioned above, Viterbi Algorithm is used to solve a
multiple-stage shortest path problem. However, in our experiments,
the number of stages and the number of middleboxes in each stage are
both small integers, so the multiple-stage shortest path problem can be
solved in constant time. Also, the complexity of each loop in
MaskedViterbi is constant time.

Thus, the computing complexity of our algorithm is linear with
respect to flow numbers theoretically. And experiments show that
Quokka is very friendly in resource consuming, as the codes add no
obvious overhead in experiments. In dynamic version algorithm, the
consuming is even less, since the algorithm runs only once during an
updating interval (often several minutes).

7.5. Optimization for sparse networks

As described above, the computing complex is proportional to the
flow number. When the topology is sparse and flow number is large, the
algorithm is not reasonable. We make some optimizations for sparse
networks.”

The main technology we adopt is flow merging. Instead of voting
and choosing path by each flow, flows with similar properties are first
merged as super flows. Each super flow has a magnification factor,
which is in fact the real flow number included in the super flow. And
when scheduling we use the real flow number to vote and schedule
flows. Although the computing complexity is still O (IFListl), the voting
and scheduling processes are highly reduced.

8. Related work
8.1. Middlebox management

Quokka benefits from many previous works. Simple-fying (Qazi
et al., 2013) and FlowTags (Fayazbakhsh et al., 2014) enforce middle-
box-related policies with SDN technologies, and they simply headache
middlebox configurations gracefully. Configurations of middleboxes in
traditional networks are complex, and some policies may be difficult to
deploy. Simple-fying and FlowTags extend southbound interface of
SDN to manage middleboxes together with Openflow (McKeown et al.,
2008) switches. They distinguish different states of packets using IP
header fields, and manage both middlebox states and forwarding states

2 We define sparse by the node number/flow number ratio.

264

Journal of Network and Computer Applications 78 (2017) 253-266

uniformly in the controller. Their contributions mostly lie in middlebox
configurations.

OpenNF (Gember-Jacobson et al., 2014) embraces SDN with NFV
technology, and provides rich APIs of middlebox operations for high
layer applications. Utilizing these interfaces, we can easily copy and
migrate stateful/stateless middleboxes. OpenNF also provides some
options like loss-free and keep-order when copying or immigrating
middleboxes, thus network managers themselves can balance opera-
tion speed with operation qualities. OpenNF can be used as the
underlayer libraries when Quokka is employed in real production
environment. But OpenNF itself doesn't provide any scheduling algo-
rithm. Quokka is based on such NFV/SDN platform, and contributes to
high level scheduling algorithms.

Previous projects like Click (Kohler et al., 2000) and RouteBricks
(Dobrescu et al., 2009) are devoted to immigrating network functions
from hardware ASICs to software platforms. Click provides program-
mability and modularity for future NFV platforms such as CoMB (Sekar
et al., 2012), NetVM (Hwang et al., 2014) and xOMB (Anderson et al.,
2012). RouteBricks tries to build a scaling software router and
demonstrate a 35 Gbps parallel router prototype. CoMB, NetVM and
xOMB focus on building high performance network function platforms.
NetVM is built on commodity servers and optimizes inter-VM com-
munication together with CPU scheduling. It improves both network
throughput and network processing speed, and can be customized as
firewalls, proxies and routers. xOMB provides an incrementally scal-
able platform for software middleboxes, and demonstrates good
performance for load balancing, protocol acceleration and application
integration. Alternately, xOMB's internal structure is used as a typical
model to analyze middlebox latency behaviours.

Static policies are often used in hardware middlebox configuration
(Sherry et al, 2012), but they lack flexibility and scalability. A
traditional load balancing example is introduced by Simple-fying
(Qazi et al., 2013). However, Simple-fying only sets maximum flow
number thresholds for middleboxes, and doesn't pay much attention to
packet latencies, while Quokka achieves high performance on reducing
end-to-end delays.

In Mohammadkhan et al. (2015), Rankothge et al. (2015), the
authors proposed the optimization problem to solve the NF (middle-
box) placement and traffic scheduling together. The heuristic The
network Function Center (NFC) (Rankothge et al., 2015) is a good
architecture to solve the problem. However, in the paper, they mainly
focused on the resource manager (one of the five modules of NFC) and
did not provide the design details of flow manager, elasticity manager,
etc.

8.2. NFV

ClickOS (Martins et al., 2014) builds a tiny VM image for middlebox
software, and it makes realtime launching possible for middleboxes.
ClickOS concentrates on high performance middlebox VMs, which is
relied on by future scheduling platforms. ClickOS boots fast (about
30 ms), consumes less resource (image size is only 5MB) and achieves
high networking throughput (up to 30 Gb/s). Specially, ClickOS is
based on modular router Click (Kohler et al., 2000), and also benefits
much from previous high performance network function platforms.
The work of Abdou et al. (2015) employs a simple queueing model
when exploring software middlebox latency behaviours. On the basis of
this simple model, we further explore more complex situations of
software middlebox.

8.3. Latency management

Many resource management frameworks are built in prior clouds
(Zhang et al., 2014; Schwarzkopf et al., 2013; Verma et al., 2015;
Hindman et al., 2011) to manage millions of servers in data centers.
These frameworks pay more attention to scalability. However, the

Q. Li et al.

operations like resource allocation take several seconds to complete. In
Liu et al. (2016), they propose Footprint to guarantee the QoS of online
services in the “integrated” setting of proxies, data centers, and the
wide area network. The latency can be efficiently controlled in SDN-
based integrated way. We build our own framework in the SDN
controller to make resource management faster, and during this
process, Quokka benefits much from these works.

Prior works of latency management in data center network like
DCTCP (Alizadeh et al., 2010), D?TCP (Vamanan et al., 2012) are some
adaptable version of TCP in data centers. They modify the sliding
window method of TCP to support different latency priorities. And
switching mechanisms are also changed to forward packets according
to their deadlines. We follow a different approach in this paper, as we
combine management of latency and middlebox scheduling, and we
guarantee different latencies by choosing proper paths and middle-
boxes.

9. Conclusion and future work

As diverse middleboxes are adopted in various networks, ie.
enterprise networks and data center networks, the management of
middleboxes is becoming a great challenge for network operators,
especially taking latency into consideration. Latency is a critical
property in many networks, and the management of latency is
unfortunately ignored in many management framework. In this paper,
motivated by NFV technologies, we combine the management of
middleboxes and latency together.

In this paper, we explore software middlebox latency behaviours,
and present Quokka, a dynamic middlebox scheduling scheme based
on NFV/SDN platforms. Compared with traditional schemes, Quokka
deploys middleboxes according to realtime traffic, and provides lower
latencies for end users with the same resource.

To handle universal-threshold flows, we build a basic scheduling
framework to provide latency guarantees for flows. Later, we extend
our algorithms for more complex and fine-grained latency control in
data centers. Experiments show that our algorithm framework can be
easily modified for various flow patterns, while simple load balancing
and static configuration only work in very simple topologies and their
performance are always poor than our algorithms, especially in
complex scenarios.

In the future, we plan to implement Quokka in real systems.
Although many NFV/SDN platforms like OpenNF can be used when
deploying Quokka in testbed experiments, many engineering problems
should be solved, for instance, eliminating flow impacting.
Additionally, how to implement the multiple NFVs in a multi-core
server is also significantly important (Savi et al., 2015). For example,
sharing a core between two different NFVs may cause the overhead of
non-uniform memory access (NUMA) (Mohammadkhan et al., 2015).

Acknowledgement

We are grateful to Peihan Miao and Christos Papadimitriou from
Berkeley for their help in complexity analysis of the optimization
problem. This work is supported by the National Research Program of
China (973) under Grant no. 2012CB315803, the National Natural
Science Foundation of China under Grant no. 61402255, the R&D
Program of Shenzhen under Grant no. ZDSYS20140509172959989,
No. JCYJ20150630170146830, and No. Shenfagai(2015)986.

References

Abdou, A., Matrawy, A., van Oorschot, P.C., 2015. Taxing the queue: hindering
middleboxes from unauthorized large-scale traffic relaying. IEEE Commun. Lett. 19
(1), 42-45.

Adan, ., Resing, J., 2002. Queueing Theory. Eindhoven University of Technology
Eindhoven, Eindhoven, Netherlands.

Al-Fares, M., Loukissas, A., Vahdat, A., 2008. A scalable, commodity data center network

Journal of Network and Computer Applications 78 (2017) 253-266

architecture. In: Proceedings of the ACM SIGCOMM, Seattle, USA.

Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B., Sengupta,
S., Sridharan, M., 2010. Data center tcp (dctep). In: Proceedings of the ACM
SIGCOMM, New Delhi, India.

Allen, A.O., 1978. Probability, Statistics, and Queueing Theory with Computer Science
Applications. Academic Press, Waltham, USA.

Amazon EC2 Website. (http://aws.amazon.com/ec2).

Anderson, J.W., Braud, R., Kapoor, R., Porter, G., Vahdat, A., 2012. xomb: Extensible
open middleboxes with commodity servers. In: Proceedings of ACM/IEEE ANCS,
Austin,USA.

Benson, T., Akella, A., Maltz, D.A., 2010. Network traffic characteristics of data centers in
the wild. In: Proceedings of the ACM SIGCOMM IMC, Melbourne, Australia.

Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S., 2007. Ethane:
Taking control of the enterprise. In: Proceedings of the ACM SIGCOMM, Kyoto,
Japan.

Chowdhury, N.M.K., Boutaba, R., 2010. A survey of network virtualization. Comput.
Netw. 54 (5), 862—876.

Dobrescu, M., Egi, N., Argyraki, K., Chun, B.-G., Fall, K., Iannaccone, G., Knies, A.,
Manesh, M., Ratnasamy, S., 2009. Routebricks: exploiting parallelism to scale
software routers. In: Proceedings of the ACM SIGOPS, Big Sky, USA.

Edmonds, J., Karp, R.M., 1972. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19 (2), 248-264.

Fayazbakhsh, S.K., Chiang, L., Sekar, V., Yu, M., Mogul, J.C., 2014. Enforcing network-
wide policies in the presence of dynamic middlebox actions using flowtags. In:
Proceedings of USENIX NSDI, Seattle, USA.

Floyd, R.W., 1962. Algorithm 97: shortest path. Commun. ACM 5 (6), 345-348.

Gember, A., Krishnamurthy, A., John, S.S., Grandl, R., Gao, X., Anand, A., Benson, T.,
Akella, A., Sekar, V. Stratos: A network-aware orchestration layer for middleboxes in
the cloud, CoRR abs/1305.0209.

Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S.,
Akella, A., 2014. Opennf: Enabling innovation in network function control. In:
Proceedings of ACM SIGCOMM, Chicago, USA.

Ghodsi, A., Sekar, V., Zaharia, M., Stoica, 1., 2012. Multi-resource fair queueing for
packet processing. In: Proceedings of the ACM SIGCOMM, Helsinki, Finland.

Google Inc., (https://github.com/google/cluster-data).

Gross, D., 2008. Fundamentals of Queueing Theory. John Wiley & Sons, Hoboken, USA.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.H., Shenker,
S., Stoica, 1., 2011. Mesos: A platform for fine-grained resource sharing in the data
center. In: Proceedigns of the Usenix NSDI, Boston, USA.

Hwang, J., Ramakrishnan, K.K., Wood, T., 2014. Netvm: High performance and flexible
networking using virtualization on commodity platforms. In: Proceedings of the
USENIX NSDI, Seattle, USA.

Joseph, D.A., Tavakoli, A., Stoica, 1., 2008. A policy-aware switching layer for data
centers. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, Seattle, WA, USA.

Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R., 2009. The nature of data
center traffic: measurements & analysis. In: Proceedings of the ACM IMC, Chicago,
USA.

Kim, H., Feamster, N., 2013. Improving network management with software defined
networking. IEEE Commun. Mag. 51 (2), 114-119.

Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M., 2011. The internet
topology zoo. IEEE JSAC 29 (9), 1765-1775.

Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F., 2000. The click modular
router. ACM Trans. Comput. Syst. 18 (3), 263-297.

Liu, H.H., Viswanathan, R., Calder, M., Akella, A., Mahajan, R., Padhye, J., Zhang, M.,
2016. Efficiently delivering online services over integrated infrastructure. In:
Proceedings of the USENIX NSDI, Santa Clara, USA.

Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., Huici, F., 2014.
Clickos and the art of network function virtualization. In: Proceedings of the
USENIX NSDI, Seattle, USA.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008. Openflow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev. 38 (2), 69-74.

Mohammadkhan, A., Ghapani, S., Liu, G., Zhang, W., Ramakrishnan, K.K., Wood, T.,
2015. Virtual function placement and traffic steering in flexible and dynamic
software defined networks. In: Proceedings of the IEEE LANMAN, Beijing, China.

Mohammadkhan, A., Liu, G., Zhang, W., Ramakrishnan, K.K., Woodv, T., 2015.
Protocols to support autonomy and control for nfv in software defined networks. In:
Proceedings of the IEEE NFV-SDN, San Francisco, USA.

Munir, A., Qazi, LA, Uzmi, Z.A., Mushtaq, A., Ismail, S.N., Igbal, M.S., Khan, B., 2013.
Minimizing flow completion times in data centers. In: Proceedings of the IEEE
INFOCOM, Turin, Italy.

Nechaev, B., Allman, M., Paxson, V., Gurtov, A., 2010. A preliminary analysis of tcp
performance in an enterprise network. In: Proceedings of the INM/WREN, San Jose,
USA.

Nunes, B., Mendonca, M., Nguyen, X.-N., Obraczka, K., Turletti, T., 2014. A survey of
software-defined networking: past, present, and future of programmable networks.
IEEE Commun. Surv. Tutor. 16 (3), 1617-1634.

Qazi, Z.A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., Yu, M., 2013. Simple-fying
middlebox policy enforcement using sdn. In: Proceedings of the ACM SIGCOMM,
Hong Kong.

Quinn, P., Guichard, J., Kumar, S., Agarwal, P., Manur, R., Chauhan, A., Leymann, N.,
Leymann, N., Boucadair, M., Jacquenet, C., Smith, N., Yadav, N., Nadeau, T., Gray,
K., McConnell, B., Glavin, K., 2014. Network service chaining problem statement.
IETF Draft.

Quokka Project. (https://github.com/bestdpf/pyquokka).

http://refhub.elsevier.com/S1084-16)30260-sbref1
http://refhub.elsevier.com/S1084-16)30260-sbref1
http://refhub.elsevier.com/S1084-16)30260-sbref1
http://refhub.elsevier.com/S1084-16)30260-sbref2
http://refhub.elsevier.com/S1084-16)30260-sbref2
http://refhub.elsevier.com/S1084-16)30260-sbref3
http://refhub.elsevier.com/S1084-16)30260-sbref3
http://www.aws.amazon.com/ec2
http://refhub.elsevier.com/S1084-16)30260-sbref4
http://refhub.elsevier.com/S1084-16)30260-sbref4
http://refhub.elsevier.com/S1084-16)30260-sbref5
http://refhub.elsevier.com/S1084-16)30260-sbref5
http://refhub.elsevier.com/S1084-16)30260-sbref6
https://www.github.com/google/clusterata
http://refhub.elsevier.com/S1084-16)30260-sbref7
http://refhub.elsevier.com/S1084-16)30260-sbref8
http://refhub.elsevier.com/S1084-16)30260-sbref8
http://refhub.elsevier.com/S1084-16)30260-sbref9
http://refhub.elsevier.com/S1084-16)30260-sbref9
http://refhub.elsevier.com/S1084-16)30260-sbref10
http://refhub.elsevier.com/S1084-16)30260-sbref10
http://refhub.elsevier.com/S1084-16)30260-sbref11
http://refhub.elsevier.com/S1084-16)30260-sbref11
http://refhub.elsevier.com/S1084-16)30260-sbref11
http://refhub.elsevier.com/S1084-16)30260-sbref12
http://refhub.elsevier.com/S1084-16)30260-sbref12
http://refhub.elsevier.com/S1084-16)30260-sbref12
http://refhub.elsevier.com/S1084-16)30260-sbref13
http://refhub.elsevier.com/S1084-16)30260-sbref13
http://refhub.elsevier.com/S1084-16)30260-sbref13
http://refhub.elsevier.com/S1084-16)30260-sbref13
https://www.github.com/bestdpf/pyquokka

Q. Li et al.

Rankothge, W., Ma, J., Le, F., Russo, A., Lobo, J., 2015. Towards making network
function virtualization a cloud computing service. In: Proceedings of the IFIP/IEEE
IM, Ottawa, Canada.

Savi, M., Tornatore, M., Verticale, G., 2015. Impact of processing costs on service chain
placement in network functions virtualization. In: Proceedings of the IEEE NFV-
SDN, San Francisco, USA.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. Wilkes, J., 2013. Omega: flexible,
scalable schedulers for large compute clusters. In: Proceedings of the ACM EuroSys,
Prague, Czech.

Sekar, V., Egi, N., Ratnasamy, S., Reiter, M.K., Shi, G., 2012. Design and implementation
of a consolidated middlebox architecture. In: Proceedings of the USENIX NSDI, San
Jose, USA.

Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V., 2012.
Making middleboxes someone else’s problem: Network processing as a cloud service.
In: Proceedings of the ACM SIGCOMM, Helsinki, Finland.

Teixeira, R., Marzullo, K., Savage, S., Voelker, G.M., 2003. Characterizing and measuring

266

Journal of Network and Computer Applications 78 (2017) 253-266

path diversity of internet topologies. In: Proceedings of the ACM SIGMETRICS, San
Diego, USA.

Vamanan, B., Hasan, J., Vijaykumar, T., 2012. Deadline-aware datacenter tcp (d2tcp).
In: Proceedings of the ACM SIGCOMM, Helsinki, Finland.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J., 2015.
Large-scale cluster management at google with borg. In: Proceedings of the ACM
EuroSys, Bordeaux, France.

Viterbi, A.J., 1967. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Inf. Theory 13 (2), 260-269.

Wilson, C., Ballani, H., Karagiannis, T., Rowtron, A., 2011. Better never than late:
Meeting deadlines in datacenter networks. In: Proceedings of the ACM SIGCOMM,
Toronto, Canada.

Zhang, Z., Li, C., Tao, Y., Yang, R., Tang, H., Xu, J., 2014. Fuxi: a fault-tolerant resource
management and job scheduling system at internet scale. In: Proceedings of the
VLDB, Hangzhou, China.

http://refhub.elsevier.com/S1084-16)30260-sbref14
http://refhub.elsevier.com/S1084-16)30260-sbref14

	Quokka: Latency-Aware Middlebox Scheduling with dynamic resource allocation
	Introduction
	Background and challenges
	Middlebox management with SDN
	NFV and benefits
	Resource and latency management in clusters

	Middlebox processing delay model
	Model overview
	Deterministic model
	Exponential model

	Problem formulation
	Problem with the uniform latency requirement
	Problem with different latency requirements

	Algorithm design
	K-level voting algorithm for MB placement
	Masked-viterbi algorithm for MDP and feedback
	Online algorithm for dynamic flows
	Algorithms with different latency requirements

	Implementation framework
	Framework design
	Northbound API
	Fault handling

	Experiments
	Simulation setup
	Experiments results and analysis
	Experiments with different latency requirements
	Computing complexity
	Optimization for sparse networks

	Related work
	Middlebox management
	NFV
	Latency management

	Conclusion and future work
	Acknowledgement
	References

