
Computer Networks 92 (2015) 287–299

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

SARD: A Smart Approach of Rule Division for fast flow-level

consistent update in SDN

Qing Li a,∗, Kun Zhao a, Yong Jiang a, Mingwei Xu b, Shu-Tao Xia a

a Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
b Tsinghua University, Beijing, China

a r t i c l e i n f o

Article history:

Received 21 November 2014

Revised 30 May 2015

Accepted 20 September 2015

Available online 3 October 2015

Keywords:

Software Defined Networks

Configuration update

Flow-level consistency

a b s t r a c t

In Software Defined Networks (SDN), the configuration inconsistency during updates is one

main source of network instability. Even if the validity of the initial and final configurations is

guaranteed, the interim complex and inconstant network states might cause routing conflicts

and transmission disruption. Therefore, an efficient updating scheme with configuration con-

sistency is required. Current schemes well guarantee the packet-level consistent update, but

perform poorly for the flow-level case.

In this paper, we present a Smart Approach of Rule Division (SARD) for fast flow-level consis-

tent update in SDN. We first provide a simplified mathematical model of the network. Based

on this model, we then propose SARD to guarantee the flow-level consistency during con-

figuration updates. In SARD, the controller (1) collects the information of existing flows; (2)

computes K optimal prefixes covering these flows, meanwhile with the minimized space; (3)

installs the new rule and K old sub-rules with lower and higher priorities respectively. SARD

preserves the flow-level consistent property and accelerates the process of configuration up-

date in SDN. We evaluate the performance of SARD by comprehensive experiments. The re-

sults show that our scheme reduces the transition time to about 10% of the current method of

periodical direct division.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The network is a complicated and volatile system, i.e.,

the topology and the traffic are dynamically changing. To

maintain network stability and provide reliable transmis-

sion service, the operators update the network configura-

tion constantly according to network states. However, even if

the static configurations are valid, some pathological states

are inevitable during the indeterminate dynamic changes

[1,2]. In a traditional network, updates of routes are indepen-

dent and asynchronous among the forwarding devices when
∗ Corresponding author. Tel.: +86 18038153239.

E-mail address: li.qing@sz.tsinghua.edu.cn (Q. Li).

http://dx.doi.org/10.1016/j.comnet.2015.09.025

1389-1286/© 2015 Elsevier B.V. All rights reserved.
network events occur. The behaviors of the network are in-

definite and uncontrollable.

Software Defined Networking (SDN) is proposed to en-

hance the controllability and manageability of the network

[3]. SDN employs centralized controlling, and thus mitigates

the problem of anomalies during network changes. SDN de-

couples the forwarding and controlling panels, centralizes

the intelligence of the network into the controller. The con-

troller determines the global routing policies and dissem-

inates them to the switches. However, the controller still

cannot ensure synchronous updates in the switches. As the

network environment is extremely complicated, the update

installation times in different switches are unpredictable.

Therefore, the configurations in different switches might be

inconsistent before the update is installed in the whole net-

work, which may cause forwarding loops, packet dropping,

http://dx.doi.org/10.1016/j.comnet.2015.09.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.09.025&domain=pdf
mailto:li.qing@sz.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.comnet.2015.09.025

288 Q. Li et al. / Computer Networks 92 (2015) 287–299
service disruption, etc. The problem to be solved is ensuring

that each packet (or flow) is handled by the same configu-

ration (the old one or the new one, but not the mixed) in

the SDN network.

In order to solve this problem of consistent configura-

tion update, researchers have proposed several protocols and

schemes, aiming to prevent transient anomalies during up-

dating. A safe protocol in [4] argues that the packets affected

by the network change should be sent to the controller, and

then be re-leased to the network after the change process ter-

minates. The two-phase updating scheme based on version

controlling introduced in [5] solves the problem of packet-

level configuration consistency in SDN very well. Katta et al.

propose another scheme of incremental consistent update

[6]. Hong et al. use a series of intermediate configurations to

satisfy the rule space and bandwidth constraints during net-

work changes [7]. Most of these proposed solutions can only

guarantee the packet-level consistency. However, the flow-

level consistency is required for all the connection-oriented

applications. Reitblatt et al. propose the scheme of dividing

rules into pieces and installing the pieces in switches period-

ically [5]. But an extremely long transition time is required in

this scheme, which may cause severe transmission problems

especially if the updating is caused by congestion. Therefore,

an efficient (faster) scheme to guarantee the flow-level con-

sistent update is required.

In this paper, we present a new Smart Approach of Rule

Division (SARD) for fast flow-level consistent update in SDN.

In SARD, we employ the algorithm of K optimal prefix cov-

ering to quickly decompose the old rules into small pieces.

The K sub rules with the smallest space covering the cur-

rent existing flows are generated, which guarantees the flow-

level consistency. Meanwhile, the new rule takes effect in the

other remained space (the space of the old rule minus the

space of all the sub rules) immediately, which makes the up-

dating more efficiently.

SARD mainly consists of four steps: (1) send the packets

affected by the update to the SDN controller; (2) the con-

troller computes K optimal prefixes covering the source IPs of

the existing flows based on the information of these collected

packets; (3) the controller generates K sub rules (old) accord-

ing to the computed K prefixes; (4) these generated sub rules

and the new rule are installed immediately into switches re-

spectively with the higher and lower priorities (meanwhile

the original old rule is deleted). After the four steps, the ex-

isting flows are forwarded by the generated sub rules (consis-

tent with the original old rule) and the flow-level consistent

property is preserved. The other new-coming packets are for-

warded by the new rules immediately.

As Ternary Content Addressable Memory (TCAM) is an ex-

pensive and rare component in the switch, we further pro-

cess the update by multiple rounds, with a smaller K for each

round. To prevent some sub rules with bigger spaces from

never disappearing, we divide these sub rules in the next

round by K prefix covering algorithm.

We propose an update network model and use this model

to prove that our scheme can preserve the flow-level consis-

tent property. To construct the K sub rules, K-prefix covering

algorithm uses the source IPs of existing flows to construct

a binary tree and computes the K optimal prefixes with the

minimal total covering space by dynamic programming.
We evaluate the performance of our scheme by compre-

hensive experiments. We implement SARD using the plat-

form of POX controller and Mininet [8]. We also run the al-

gorithm in the real topologies of ChinaNET, IBM and York [9].

The results show:

• SARD reduces the transition time (from the old configura-

tion to the new configuration) to about 10% of the method

of dividing periodically in [5], while maintaining the flow-

level consistency.

• In our scheme, about 4012 flows are redirected to the con-

troller during the update in the small topology as Fig. 2

shows. Although some extra burdens are brought to the

controller, using the powerful controller to strengthen the

network is reasonable and effective.

The remainder of this paper is organized as follows.

In Section 2, we show the background and motivation. In

Section 3, we develop a simple, formal network update

model. This model allows us to describe the forwarding op-

eration of packets and the update process of the configura-

tion formally. In Section 4, we provide the flow-level consis-

tent mechanism, and we also propose some optimization to

avoid the network congestion and ease the burden of the con-

troller. In Section 5, we present the minimum prefix cover-

ing algorithm and the corresponding complexity analysis. In

Section 6, we discuss how our mechanism works in the SDN

network with multi-controllers. In Section 7, we present the

evaluation results of SARD and the scheme of dividing peri-

odically. In Section 8, we review the related works. Finally, we

end the paper by the conclusion and discussion in Section 9.

2. Background and motivation

Computer networks are composed of many different de-

vices such as routers, switches and middleboxes, which are

implemented with numerous complicated protocols. Simul-

taneously, operators have to accomplish some complex tasks

with limited tools, i.e., translating high-level policies to low-

level forwarding rules. As a result, the management of net-

work is always a significant challenge with its error-prone

property [10]. Another unsurmountable problem is that net-

works are extremely difficult to evolve with a wide deploy-

ment. These challenges promote the origin of openflow [11],

which aims to provide a simple and feasible approach to

manage the networks (especially the enterprise network)

[12,13].

SDN allows network operators to manage networks like

a local resource through the abstraction of devices [14]. This

is achieved by decoupling the intelligence from the forward-

ing panel and centralizing it in the control panel. The con-

trol panel collects statistics of the network from the forward-

ing panel, provides the global network view and application

interface to the operators. The forwarding panel is only re-

sponsible for packet forwarding. Network operators can im-

plement their custom algorithms in the controller, gener-

ate rules to configure the switches and thus control traffic

forwarding.

Contrast to the traditional network, SDN is a central-

ized system in the control panel. However, in the forward-

ing panel it is still a distributed system. Each switch forwards

packets according to its flow table independently. This means

Q. Li et al. / Computer Networks 92 (2015) 287–299 289
there may also exist inconsistent states in SDN, which will

cause some serious problems, like the security problem, net-

work congestion and service interruption. Therefore, the con-

figuration consistency must be guaranteed during updates in

SDN. That is, each packet (or flow) must be handled by the

same configuration (the old one or the new one).

The consistency of configuration update can be classi-

fied into two types: the packet-level consistent update and

flow-level consistent update [15]. The packet-level consis-

tency can only satisfy the requirements of the connectionless

applications. For the connection-oriented applications, the

flow level consistency is generally indispensable, as config-

uration switching from old to new may interrupt the current

connection.

Two-phase commit [5] is employed to accomplish the

packet-level consistent configuration update. In [5], the con-

troller divides the network nodes into two domains: the ex-

ternal network domain and the internal network domain.

Accordingly, the updates can be classified into internal up-

dates and external updates. For each configuration change,

(1) the internal part will be first updated with the new ver-

sion of configuration; (2) then the external part will be up-

dated. Before the second step, the ingress switch will forward

the incoming packets by the old configuration and label the

packets with the old version. All the internal switches will

forward the packets according to the labeled version. In this

way, the controller can distinguish the configurations and the

packet-level consistent update is achieved. However, this is

not enough for connection-oriented applications.

There are several approaches for flow-level consistent

configuration update, including switch rules with time-

outs, wildcard cloning, end-host feedback, etc. [5]. Wildcard

cloning needs the switch to detect the existing flows and in-

stall the cloning rules for these flows. Nonetheless, as the

switch is simple and has little intelligence in the SDN net-

work, wildcard cloning is not feasible. End-host feedback

needs the host to notify the controller about the existing

flows. The communication between the host and controller

will bring some security threats to the controller. Mean-

while, involving the end hosts for the network function is not

reasonable.

In the approach of rules with timeouts, the old switch rule

is divided into smaller sub rules and the sub rules will be

erased periodically if no covered flow exists after the time-

out. The controller refines the old rule and installs the smaller

sub rules in the external switch with a soft timeout. After

one period, the refined sub rules will be deleted as the ex-

isting flows drain out the network. If the refined sub rules

have not been erased, the controller will refine them in the

next period. The covering space size of a sub rule determines

the possibility of erasure. Larger rules need smaller memory

and longer transition time; smaller rules need larger mem-

ory and shorter transition time. Generally, the TCAM of a

switch has limited memory. Therefore, this approach needs

a long transition time, which may cause severe transmission

problems. Especially when the updating is caused by conges-

tion, the overloaded server may fail and the service may be

interrupted.

To accelerate the flow-level consistent update in SDN, we

present a Smart Approach of Rule Division (SARD) for fast

flow-level consistent update in this paper. SARD improves
the two-phase commit in [5]. It forwards the affected packets

to the controller. Then the controller uses the minimum pre-

fix covering algorithm to compute the K optimal prefixes and

generates the corresponding K sub rules. SARD can achieve

the fast flow-level consistent configuration update, mean-

while avoids the explosion of the flow tables in switches.

3. The update model

In this section, we present a simple mathematical model

with the essential features of the SDN network. We also de-

fine the process and update operations of the network based

on the model. The relation N
us−→ N′ is used to describe the

network update, where N is the network before the update

and N′ is the network after some number of update opera-

tions. Intuitively in SDN, the update operation should be re-

garded as a control message between the controller and the

switch, which directs the switch to update its flow table or

send some special packets. In this paper, it is the message to

installing a new rule in the flow table. The main purpose of

our model is to compute the traces of packets which contain

the paths of the packets. According to these traces, we can

find whether the consistent property is preserved during the

network configuration update.

Notations. We use standard notations to denote a set: the

notation {x1, x2, x3} means a set including the elements of x1,

x2 and x3. [x1, x2, . . . , xk] is a list of k elements. A tuple which

contains a pair of elements is expressed by the notation

(x1, x2).

The operation T1 −→ T2 denotes a function with the type of

T1 as the input and the type of T2 as the output result, while

T1
C−→ T2 means this function works under the condition of C.

The operation A + +B means appending the element B to the

list A.

Basic structures. As Fig. 1 shows, we define the syntax

of the elements of the network update model. In the Open-

Flow protocol, several fields (domains) are used to match the

packets, including the ethernet source address, the ethernet

destination address, the VLAN id, etc. The index key is a set

composed of these domain names. The value is a sequence

of bits, where a bit is either 0 or 1. A header is a list of fields

and values, which is used to match the forwarding rules in

the switch. A packet contains two parts: a header and the

payload (data). Obviously, different types of packets have dif-

ferent headers which contain different domain values. Some

headers may contain all the domains in the set Key, others

may only contain some of the domains. For example, the

header of a TCP packet has the domain transport source port,

but the header of a LLDP packet does not. A rule consists of

a match and some actions. A match is also a list of domains

and values. There are some differences between a match and

a header. For example, in a header the domain IP source ad-

dress is a sequence of bits, but in a match it may contain

a mask. In our model, we break a specific domain into two

parts (one part is the value domain and another is the length

domain which is never appears in a header). Apparently dif-

ferent rules have different domains. If a rule does not have

a certain domain, it can match any value of the domain. In

the SDN network, each switch or port has an unique number,

290 Q. Li et al. / Computer Networks 92 (2015) 287–299

Bit b ::= 0|1
Key k ∈ {sip, dip, ...}
Value v ::= [b1, ..., bk]
Header h ::= [k : v]
Match m ::= [k : v]|φ
Packet pk ::= (h, data)
Rule r ::= (m, action)
Port p ::= 1|...|k|world|drop
Switch s ::= 1|...|k
Update u ::= (p, r)
Trace t ::= [(s, rules)]
Topology T ∈ p − →p
Configuration C ::= [(s, rules)]
Located Packet lp ::= (p, pk, t)
Switch Function SF ∈ lp − →located packets
Network N ::= (C, T, located packets)

Network PROCESS
if lp in N
and [lp1, lp2, ..., lpk] = SF (lp)
and ti = t + +(S, action of SF), for i in range(1, k)
and delete lp fromlps
and lps′ = override(lps, [lp1, lp2, ..., lpk])

then (C, T, lps)
lp−→ (C, T, lps′)

Network Update
if C ′ = override(C, u)
then ((S, rs), T, lps) u−→ ((S, rs′), T, lps)

Packet-level Consistent Property
N

us−→ N ′

for any packet p, leave the network
tp ∈ N or tp ∈ N ′

Flow-level Consistent Property
N

us−→ N ′

for all packets ps ∈ a flow, leave the network
tps ∈ N or tps ∈ N ′

Fig. 1. The update model: syntax and semantics.
which can be used to identify them. An update is a message

which notifies a local switch to install a new rule.

The switch function is a packet processor that takes a

packet coming from an inport as an input and generates

several packets as a result and forwards these packets to

outports. The switch function may modify the contents of

the packet, generate one packet to forward, produce several

packets to multicast or drop this packet. Following the work

of Kazemian et al. in [16], a network is the composition of two

simple behaviors: (1) forwarding the packet as the switch

function directs and (2) moving the packet from one switch

to another through the link. The topology function maps one

switch to another if there is a link between these switches

in the network. As the controller has a global view of the

network, it knows whether a switch connects to the internal

or external network and then divides the network into the

egress network and the core network.

To ensure that topology and switch functions are reason-

able, we make the following definitions for two special con-

ditions:

(1) For any given packet p, SF(drop, p) = [drop, p] and

SF(world, p) = [(world, p)];

(2) T(drop) = drop and T(world) = world.

In these conditions, once a packet is dropped or for-

warded beyond the perimeter of the network, it must stay

dropped or beyond the perimeter of the network and never

return. If a packet returns from another network, we treat the

return packet as a “fresh” packet.

An update message is forwarded to a switch from the

controller and then directs the switch to update its rule ta-

ble by installing the new rule in the message. On receipt

of a packet, the switch performs the table lookup. Then the

packet matches some rules according to the corresponding

fields (if the packet matches no rule, it will be sent to the

controller). These matched rules can be used to generate the

trace of this packet. The configuration of the network is a

set of rules which compose the switch function. The located

packet has three parts: location (port), content (packet) and
trace. A network is composed of the configuration which di-

rects the switches to forward packets, the topology and the

packets with their trace.

Network process and update. The network process is an

operation of packet forwarding in the network. In a network

process, the switch function takes a packet as an input and

returns a list of packets which may contains zero, one or sev-

eral packets. These packets are forwarded through the link

and reach the adjacent switches. After the network process,

the network comes into a new state. So the network process

will not change the topology and configuration of the net-

work.

The network update is an update operation of the net-

work. The controller generates an update message and for-

wards it to a switch. Then the switch changes its rule table

according to this message. This update operation changes the

configuration of the network only.

Flow-level consistent property. In the SDN network, the

switch only has some simple functions such as forwarding

packets according to the rules in the flow table and the con-

troller directs the switch how to forward packets. So the

trace which contains the rules matched by the packet can be

used to verify many priorities, including access control, loop-

freedom, consistency, etc. The packet-level consistent prop-

erty means any packet is forwarded by the same configura-

tion (the old one or the new one, but not the mixed) during

the network configuration update. The flow-level consistent

property means all packets which belong to a flow are for-

warded by the consistent rules from the same configuration.

Once a packet is forwarded by a configuration (the new or old

one), the remaining packets of the flow should be forwarded

by the same configuration.

4. SARD: fast flow-level consistent update

In the openflow network forwarding devices are simple,

but the controller is intelligent and powerful. So the basic

idea of our mechanism is redirecting the packets affected by

the configuration update to the controller and utilizing the

Q. Li et al. / Computer Networks 92 (2015) 287–299 291

Fig. 2. Two-phase commit.
controller to accelerate the update. As the flow-level con-

sistency is stronger than packet-level consistency, we use

the two-phase commit [5] to guarantee packet-level consis-

tency, based on which we then design the scheme of SARD to

achieve the flow-level consistent update.

To prepare update, (1) we divide the network devices and

ports into two parts: the egress network and the core net-

work as Fig. 2 shows (as in [5]); (2) the controller adds the

version number as a domain of the rules and the switch in the

egress network tags the version number in the packets enter-

ing the network; (3) the core network uses the version num-

ber to guarantee the packet is forwarded according to the

same version of configuration; (4) the egress switch strips

the version number when the packet leaves the network.

As there are some unused matching fields in SDN packet,

we can store the version number in one of them (VLAN id,

MPLS label, etc.). In our mechanism, we use the VLAN id field.

The ingress (egress) switch can modify the version number

with the push (pop) operation which is well supported in the

standard Openflow protocol. Therefore, no protocol change is

required for our mechanism.

Definition 1 (two-phase commit [5]). Let C1=[(s,rules)]

be the old configuration with version number 1 and C2

=[(s,rules’)] be the new configuration with version number

2. Let us = [ui
1
, . . . , ui

m, ue
1
, . . . , ue

n] be an update sequence:

• C2 = override(C1, us)
• ∀p ∈ the domain of ui

j
, p is in the core network

• ∀p ∈ the domain of ue
j
, p is in the egress network

• ui
j
, ue

j
with version number 2

• ue
j

add version number 2

Then us is a two-phase commit from C1 to C2.

Theorem 1. Two-phase commit can preserve the packet-level

consistent property.

In the first phase, we update the core network. In the sec-

ond phase, we update the egress network. When the packet

entering the network, it is tagged with a version number

which will not be changed. Using this version number to dis-

tinguish the old and new configuration, the packet is only for-

warded by one configuration. If the packet has version num-

ber 1, the old configuration decides the path of the packet. If

the packet has version number 2, the new configuration for-

wards the packet.

The problem of preserving the flow-level consistent prop-

erty is equivalent to the problem of tagging the same ver-
sion number to the packets of a flow. If the version num-

ber is the same, all packets will be forwarded by the same

configuration.

Based on the two-phase commit, we propose the

controller-partaking mechanism which uses the controller to

accelerate the speed of configuration update. Considering the

TCAM in switches is a scarce and expensive resource, we re-

strict the number of rules we can use during the update. The

steps of our controller-partaking mechanism for SARD are as

follows.

1. The controller installs the new configuration with a new

version number in the core network. This operation does

not affect the traffic forwarding because there are no

packets with the new version number in the network.

2. The controller installs new configuration with a lower pri-

ority in the egress switch after the core network com-

pletes update. This operation guarantees when a packet

comes in, the switch in the core network knows how to

deal with it.

3. The controller installs a temporary rule with a higher pri-

ority in the egress switch and deletes the old rule. This

temporary rule redirects all the affected flows to the con-

troller when they come in the network during the flow

heart break. The flow heart break means the biggest in-

terval between two continuous packets in a flow. If there

is no incoming packet of the flow during the flow heart

break, we think the flow expires. During the period, the

controller gets the information of existing flows and for-

wards these flows by the old configuration.

4. After a heart break, the controller computes K optimal

prefixes according to the collected information of the ex-

isting flows and accordingly generates K sub rules cover-

ing all the existing flows. Then the controller installs these

sub rules with a higher priority. Meanwhile the tempo-

rary rule is removed. The action of these sub rules are the

same with the old rule.

5. The sub rules in the switches are timed out and removed

as the existing flows expire. The old configuration disap-

pears as time goes by and the new configuration takes

place.

Definition 2 (controller-partaking update). Let C1 =
[(s, rules)] be the old configuration with the ver-

sion number of 1 and C2 = [(s, rules′)] be the new

configuration with the version number of 2. Let

us = [ui
1
, . . . , ui

m, ue
1
, . . . , ue

n, uc
1
, . . . , uc

h
, uo

1
, . . . , uo

k
] be an

update sequence:

• C2 = override(C1, us)
• ∀p ∈ the domain of ui

j
, p is in the core network

• ∀p ∈ the domain of ue
j
, p is in the egress network

• ∀p ∈ the domain of uc
j
, p is in the egress network

• ∀p ∈ the domain of uo
j
, p is in the egress network

• ui
j

with version number 2

• ue
j
, add version number 2

• uo
j
, add version number 1

• uc
j
, f orward packets to the controller

• ∀actions ∈ uo
j
, actions ∈ C1

Then us is a controller-partaking update from C to C .
1 2

292 Q. Li et al. / Computer Networks 92 (2015) 287–299
Theorem 2. Controller-partaking update in SARD can preserve

flow-level consistent property.

Before the configuration update, all packets which belong

to existing flows are tagged with the version number 1 and

forwarded by C1. During the configuration update, the pack-

ets of existing flows match the sub rules of the old configu-

ration in the egress network and are tagged with the version

number of 1 and directed by C1. The new flows beyond the

covering space of the sub rules are tagged with the number

of 2 and forwarded by C2. As the pieces of the old configura-

tion can cover all existing flows and are deleted after the con-

tained flows disappear, the flow-level consistent property is

preserved.

In the controller-partaking mechanism, all the packets af-

fected by the update are forwarded to the controller. Then

the controller can get the information of the existing flows

and generate sub rules according to this information. So this

mechanism accelerates the process of updating. However, as

some sub rules installed in the egress switch may be still too

“big”, some new flows covered by these rules may come be-

fore the existing flows expire, they may never disappear. To

solve these problem, we propose an incremental controller-

partaking mechanism for SARD.

In the incremental controller partaking mechanism, the

controller completes the configuration update in several

rounds. In the next round, the controller updates the “big”

sub rules which are installed in the previous rounds and still

alive. Suppose K is the max number of sub rules that the

switch can provide for the update. The steps of incremental

controller-partaking mechanism are as follows:

1. The controller installs the new configuration with a new

version number in the core network.

2. The controller installs the new rule with a lower priority

in the egress switch.

3. The controller installs a temporary rule which redirects

the affected flows to the controller.

4. After a flow heart break, the controller generates M num-

ber of sub rules covering all the existing flows using the

minimum prefix covering algorithm (M equals K minus

the number of rules in the sub rule table). The controller

then installs these M sub rules in the egress switch.

5. The controller records these sub rules in its sub rule table.

Some sub rules in the egress switch may expire as time

goes. The controller catches the flow-removed message

from the egress switch and removes the corresponding

entry in the sub rule table.

6. After some flow heart breaks, if there still exist some “big”

sub rules (bigger than a given threshold) in the sub rule

table, the controller chooses one and starts another round

of update (Jump to step 3).

The controller-partaking mechanism may install some

rule whose space is huge and never expires. The incremen-

tal controller-partaking mechanism can solve this problem,

where the “big” sub rules will be updated in the following

periods.

Theorem 3. Incremental controller-partaking mechanism can

preserve flow-level consistent property.
For the packets of the existing flows, no matter whether or

not they are forwarded to the controller, they will be tagged

with the old version number and forwarded by the old con-

figuration. As for the new flows, some of them (covered by

the sub old rules) will be tagged with the old version number

and the others will be tagged with the new one. The flow-

level consistent property is preserved as the core network

will forward the flow packets according their tagged version

number.

5. Algorithm design

In this section, we propose the algorithm of K-prefix cov-

ering, which computes the optimal K prefixes. These K pre-

fixes can be used to divide an old rule into K optimal sub rules

with the minimized space and the sub rules cover all the ex-

isting flows. We also prove the validity of our algorithm and

analyze the complexity.

5.1. Definitions and theorems

In SARD, the controller gets the details of existing flows

and then installs the corresponding rule for each flow. To

avoid the nontrivial memory overhead in TCAM, the con-

troller must control the number of rules. In openflow net-

work, there are 12 match fields for an exact rule. In this sec-

tion, we only use the field of source or destination IP to divide

an old rule.

Definition 3 (Prefix Space). For a prefix p, Space(p) is the

number of IP addresses covered by p. For a prefix set PS,

Space(PS) is the number of IP addresses covered by ∀p ∈ PS.

For example, the prefix space of 192.168.0.0/16 is 216. For

any rule defined by a specific prefix, we can use the prefix

space to evaluate its space size. If the prefix space is smaller,

the rule contains fewer flows and it will be timed out and re-

moved faster. But if the prefix space is larger, the rule may be

difficult to disappear, as new flows come before the current

flows expire.

Definition 4 (Cover relation �). Let p1 and p2 be any prefixes

and � be a relation of two prefixes, p1 � p2 means that all the

IP addresses covered by p1 are covered by p2.

For the prefix sets PS1 and PS2, PS1 � PS2 means each IP

address covered by the prefixes in PS1 is covered by some

certain prefix in PS2. In this paper, the prefix set we discuss

has no cover relation among its prefixes.

Strong cover (≺): p1≺p2 means p1 � p2 and Space(p1)

< Space(p2). PS1≺PS2 means PS1 � PS2 and Space(PS1) <

Space(PS2).

A trie (binary tree) can be used to represent all IP ad-

dresses and prefixes, as Fig. 4 shows. In the trie, for two pre-

fixes p2 and p1, p1 ≺ p2 means that p2 is an ancestor node of

p1. It is straightforward that if p2

⋃
p1 is not empty, the rela-

tion between them must be one of the three: p2≺p1, p1≺p2

or p2 = p1.

Definition 5 (Merge Operation). Given two any different

prefixes p1 and p2, p3 = Merge(p1, p2) means finding a prefix

p that: p � p , p � p and Space(p) is minimized.
3 1 3 2 3 3

Q. Li et al. / Computer Networks 92 (2015) 287–299 293

Fig. 3. A binary tree for three ordered prefixes.

Table 1

Variables and constants.

IPs The source IPs of flows

Height 32—the mask of prefix

K The number of prefixes

item = <s, l, r> The left child has l IP addresses

The right one has r IP addresses

The minimal total space is s

IS = [itemi] An item set
In the complete binary tree, the merge operation means

finding the lowest common ancestor of two prefixes. If p1≺p2

or p2≺p1, the merge operation returns p2 or p1 correspond-

ingly.

Given three ordered1 prefixes p1, p2 and p3, suppose there

are no cover relation among them. Let p12 = Merge(p1, p2)

and p23 = Merge(p2, p3). According to Definition 4, p12 and

p23 both cover p2. We can further get the conclusion that

p12≺p23 or p23≺p12. That is to say, we can use these five pre-

fixes to construct a binary tree as shown in Fig. 3 shows. This

is a significant conclusion for our algorithm.

Definition 6 (Min K-Prefix Set Mink(PS)). Given a prefix set

PS and k ≤ |PS|, PS′ = Mink(PS) is the min k-prefix set for PS

iff PS�PS′, |PS′| = k and Space(PS′) is minimized.

From Definition 5, if two prefixes do not cover any com-

mon IP address, they can be merged and we can get a prefix

covering both of them. For a set which covers N IPs, we sort

the IPs and merge the adjacent IPs to get the lowest common

ancestor. The N IPs and N − 1 prefixes can be constructed as

a binary tree.

According to Definition 3, the rules defined by the prefixes

with smaller space are more possible to disappear. From the

constructed binary tree, we need to choose K prefixes with

the minimal space and covering all the IPs (leaf nodes).

Let Spacek(PS) = Space(Mink(PS)).

Theorem 4. Given any prefix set PS, Spacek(PS) ≥
Spacek+1(PS).

From Definition 6, Spacek(ps) is the minimal space and all

K prefixes have no common elements. We can choose one

from K prefixes and split it into two prefixes. Then the Space

of this new prefixes set is not larger than Spacek(ps) and not

smaller than Spacek+1(ps).

5.2. Minimum prefix covering algorithm

All flows affected by the update are forwarded to the

controller, and then the controller gets the details (like the

source or destination IPs) of these flows. On one hand, to

avoid the explosion of the flow table in the switch, we limit

the number of rules used during the configuration update. On

the other hand, to complete the update fast, we use the rules

as many as we can. So even Spacek−1(ps) equals Spacek(ps),

the controller still uses K prefixes to cover the IP addresses

and divide the old rule.

Our algorithm uses dynamic programming and derives

the optimal prefixes from bottom to top: (1) sort N IPs and get

new N − 1 prefixes by merging the adjacent prefixes; (2) con-

struct a binary tree using N IPs and N − 1 merged prefixes; (3)
1 The prefixes are sorted by the inorder traversal in the trie.
find K nodes from the tree with the minimized space. Table 1

defines the set of variables and constants which appear in

this K-prefix covering algorithm.

In the step 2, we use mergeNode to compute IS in every

node as the Eq. (1) shows. In the step 3, we get an allocation

scheme P.IS (dlist.start.value.IS) and then get K prefixes from

up to bottom. If the scheme allocates m prefixes to a node

p, p.IS[m] is the allocation of its children. Additionally, l in

p.IS[m] is the number of prefixes allocated to the left child, r

is the number of prefixes allocated to the right child and s is

the space of this allocation scheme. If l and r in p.IS[m] are 0,

it means p is selected and not divided. At the end, we find the

best allocation scheme.

MergeNode merges two prefixes into one and computes IS

of the new node. As Eq. (1) shows, i is the number of prefixes

allocated in this node and IS[i] means the allocation scheme

with minimal space among all possible schemes. IS[1] means

the number of prefixes allocated is 1 and there is no dividing.

So IS[1] equals 2height.

IS[i] =

⎧⎨
⎩

< min(IS1[j].s + IS2[m].s), j, m >,

i = j + m, K ≥ i > 1

< 2height , 0, 0 >, i = 1

(1)

For example, given five IP addresses (59.78.45.192,

59.78.45.195, 59.78.45.199, 59.78.45.203, 59.78.45.207)

and get four prefixes (59.78.45.192/30, 59.78.45.192/29,

59.78.45.192/28, 59.78.45.200/29). We can construct a bi-

nary tree as Fig. 4 shows and initialize the leaf nodes a, b, c,

d, e: height=0, IS = [< 1, 0, 0 >]. IS shows the space of these

nodes is one and they have no children. Through merging

node a and b, we can get the value of node T: height=2,

IS = [< 4, 0, 0 >,< 2, 1, 1 >]. The IS of node T means if allo-

cating 1 prefix, the prefix is T; if allocating 2 prefixes, they

are a and b. When we compute IS[3] of R, we can allocate the

left child S two prefixes and the right child W one prefixes

or opposite. Then we get the allocation with minimal space.

After building the binary tree, we get the K prefixes from up
Fig. 4. An example for the algorithm.

294 Q. Li et al. / Computer Networks 92 (2015) 287–299

Fig. 5. Multi-controller SDN.
to bottom. Assume K is 3, we get the allocation from IS[3] in

the root R. Then we find it allocates one prefix to its left child

and two prefixes to its right child. Finally we will get S, d

and e.

5.3. Algorithm validity and complexity

In our algorithm, we construct a binary tree using 2N − 1

prefixes and get K prefixes from the tree to compose the final

allocation scheme. Let PS = [p1, p2, . . . , pN, . . . , p2N−1] be the

list of prefixes and r be the index of the root in the list PS.

Assume that flag is an index of a prefix in the tree, Left(pflag)

is the index of the left child, Right(pflag) is the index of the

right child and the final list of K prefixes is PK = [p′
1
, . . . , p′

k
]

which is gained by our k-prefix covering algorithm. Then we

prove PK = Mink(PS).

First, we prove Mink(PS) must be a subset of PS: Assume

that the prefix p2N is not in PS but in Mink(PS).

(1) Compare p2N and pr: If pr≺p2N, then Space(pr) <

Space(p2N). So p2N will never be selected and the pro-

cess ends; If p2N≺pr, then flag = r, left = Left(pflag),

right = Right(p f lag) and jump to step 2.

(2) Compare p2N and pchild: If p2N≺pchild,

child = le f t|right, then f lag = child, le f t =
Le f t(pchild), right = Right(pchild), and jump

to step 2; If pchild≺p2N and p2N

⋂
pchild′ = φ,

(child, child′) = (le f t, right), then Space(child) <

Space(p2N). So p2N will never be selected and the

process ends.

Therefore, the prefix p2N does not exist and Spacek(PS) ⊆
PS. Given pi, pi

⋂
ple f t �= φ and pi

⋂
pright �= φ, we can get

that Space(pflag) ≤ Space(pi). Thus, there does not exist p2N

that pany
⋂

ple f t �= φ and pany
⋂

pright �= φ.

Now we prove there does not exist a better allocation.

Given the prefix list PT = [pt
1
, . . . , pt

m] with m prefixes.

(1) pt
i
∈ PT, pt

j
∈ PT and pt

k
= Merge(pt

i
, pt

j
).

(2) Compute the list IS of pt
k

according to Eq. (1).

Assume ISt
k
[(a + b)] = ISt

i
[a] + ISt

j
[b]. If there exist

smaller ISt
i
[a], ISt

k
[(a + b)] will be smaller. Thus in our

algorithm, the optimal solution covers the optimal so-

lution of sub-problem.

(3) The final list PK is the list which has K elements, covers

all the N ips and has the minimal space.

Therefore, there does not exist a better allocation.

Mink(PS)⊆PS and our algorithm can get the best allocation,

so PK = Mink(PS).

The algorithm has three steps: (1) sort the prefixes and

get new N − 1 prefixes through merging the adjacent pre-

fixes; (2) construct a binary tree using 2N − 1 prefixes; (3)

find K nodes from the tree. In the first step, the time complex-

ity of sorting is O(NlogN) and getting new prefixes is O(N).

In the second step constructing the tree just needs to iterate

all the prefixes, so the time complexity is also O(N). In the

third step we need to build IS in every node and the com-

plexity is O(NK2). So the time complexity of our algorithm is

O(NlogN + NK2).
6. SDN with multiple controllers

In SDN, one single centralized controller with limited

computation capacity and bandwidth will become the bot-

tleneck of the network. Besides, the controller may crash

due to diverse vicious attacks. To solve these problems, some

logically centralized but physically distributed SDN archi-

tectures have been proposed [17,18]. Hyperflow [19] unifies

the global view through a subscription system. Onix [20]

uses a database to synchronize the strong consistent infor-

mation like the global view and employs the distributed

hash table to share the weak consistent information like

link utilization. Kandoo [21] proposes a multi-layer SDN ar-

chitecture to overcome the problem. In these schemes, the

control plane contains multiple controllers. As Fig. 5 shows,

each switch connects to one master controller. A controller

controls the switches in its domain directly and affects the

switches beyond its domain by the communication with

other controllers. When the topology changes, the master

controller receives the event and then notifies the other

controllers.

To guarantee the flow level consistent update for the

multi-controller scenario, SARD needs the cooperation

among these controllers. (1) When the network configura-

tion update occurs, the main controller (the controller which

triggers the configuration update) divides the network into

the egress network and the core network. (2) The main con-

troller installs the new configuration into the core network.

It installs the rules into the switches in its domain directly. If

the switch is out of its domain, it sends the rules to the mas-

ter controller of the switch. The corresponding master con-

troller programs the switches in its domain and notifies the

main controller after the rules have been installed. (3) Then

the main controller notifies the egress controller (the master

controller of the egress switches) to update the egress net-

work. (4) In the following steps, we only need to program the

egress switch to find the existing flows and install some rules

for them. The egress controller can handle all the remaining

work as if it is the only one single controller of the network.

It installs some rules in the egress switches to collect the in-

formation of the packets affected by the update. At the same

time, it installs the new configuration with a lower priority

in these egress switches. Then it generates the K optima sub

rules of the old configuration. The new rule configuration are

immediately triggered for all the flows except those covered

by the K sub rules. Finally, these sub rules will disappear as

the existing flows expire.

Compared with the single-controller case, SARD will

not hinder the performance or increase update time in

Q. Li et al. / Computer Networks 92 (2015) 287–299 295

Algorithm 1 K-PrefixCover(IPs).

1: sort IPs

2: # build a double linked list using IPs

3: initialize dlist

4: for all ip in IPs do

5: initialize a node for ip

6: node.value=Treeip with only the root

7: Treeip.height = 0

8: Treeip.pre f ix = IP

9: Treeip.IS = < 1, 0, 0 >

10: dlist.add(node)

11: end for

12: for node in dlist do

13: node.height=32-Mask(node,node.next)

14: end for

15: #the bits of IP is 32,the height is less than 33

16: dlist.end.height=33

17: #construct a binary tree

18: flagNode=dlist.start

19: while flagNode.next!=dlist.end do

20: If flagNode.height < flagNode.next.height

21: mergeNode(flagNode,flagNode.next)

22: dlist.delete(flagNode.next)

23: flagNode=flagNode.before

24: Else

25: flagNode=flagNode.next

26: EndIf

27: end while

28: IPs merge into one prefix

29: dlist.start.value is the allocation scheme
multi-controller SDN. That is because when the controller

installs the new configuration in the core network, it dis-

tributes the rules to all the other controllers that will pro-

gram the corresponding switches. If the egress switches be-

long to different master controllers, these controllers may

commit the update concurrently. We only need to guarantee

the version number is unique in the whole network. There

are some consensus algorithms [22] which can solve this

problem.

7. Evaluation results

We evaluate the performance of SARD and the algorithm

with the popular POX controller and Mininet. We develop a

load balance application that finds server replicas and then

divides traffic between them. The topology is illustrated in

Fig. 2. The egress switch broadcasts an external IP address

using ARP protocol. The destination (the external IP) of an

in packet will be replaced with the IP address of a certain

server replica by the egress switch. When receiving an out

packet with the source IP of a server replica, the egress switch

replaces the source IP with the external IP. In short, the egress

switch integrates the functions of NAT and load-balancer.

The traffic confirms to Poisson distribution [23]. The inter-

arrival times are exponentially distributed and the durations

are power law distribution [24]. All IPs are evenly distributed

across the whole IP space. To simulate the network change

and the configuration update, one server is provided at the

first and another wakes up after a while. At beginning, the

egress switch forwards all packets to the single server. After

another server wakes up, the controller detects the network

change and notifies the load-balance program. Then the pro-

gram divides the space into pieces and shifts traffic to the

new server. In our experiment, we implement the method

that divides the space and installs the pieces periodically as

a comparison. To avoid the expansion of the flow table, the

number of rules we use during the update is limited. We col-

lect the data every 30 s.
Fig. 6. DP is an abbreviation of divide periodically and CP is short of controller par

message between the switch and controller. So M–CP is the control message in the s
Fig. 6 shows how the factors (length of prefix, number

of rules, number of flows) affect the speed of configura-

tion update. In Fig. 6(a), the number of rules we use dur-

ing the configuration update is 128 and the number of flows

per second is 120. It shows when the length of the prefix
taking. F means the flows through the controller and M means the control

cheme of controller partaking during the configuration update.

296 Q. Li et al. / Computer Networks 92 (2015) 287–299

Fig. 7. Load balance.
increases, the update period also increases for the method

of periodical division (DP). While SARD (Controller Partak-

ing, CP) is quite stable with the prefix length. In the method

of dividing periodically, the prefixes will be divided and in-

stalled in the egress switch. So if the prefix is longer, it will be

split more times. But in SARD, we generate sub rules accord-

ing to the IP addresses of the existing flows. The space sizes

of the sub rules are mainly determined by the flow number.

Thus SARD is almost not affected by size of the original old

rule (prefix length). Correspondingly, the number of flows

forwarded to the controller in SARD and the control messages

in these two schemes are shown in Fig. 6(d). The control mes-

sages in dividing periodically increase as the length of prefix

increases, but not in SARD.

In Fig. 6(b), the prefix length is 24 and the number of flows

per second is 120. In the method of SARD and periodical di-

vision, the more rules (larger TCAM) in the egress switch, the

fewer periods are needed. As larger TCAMs mean the pre-

fixes can be divided into smaller pieces. Thus the sub rules

will take less time to disappear (time out). Fig. 6(e) shows

the number of flows forwarded to the controller in SARD and

the number of control messages.

Fig. 6(c) presents the relation of the traffic and update pe-

riod (the prefix length is 24 and the rule number is 128). More

flows the traffic contains, more periods the method of peri-

odical division need. As more flows means before the rule

piece is deleted, new flows are more likely to arrive. Thus

there will be fewer usable rules in the next period. In con-

trast, although SARD is also influenced by these factors, it is

more steady and takes fewer periods. Fig. 6(f) is the number

of flows forwarded by the controller and the number of con-

trol messages during the configuration update in SARD. We

can see, when the number of flows increases, there are more

flows forwarded to the controller. That is because: although

the periods increase as the flows increase, the flows match-

ing the sub rules increase too. As Fig. 6 shows, our scheme is

better than periodical division.

In Fig. 7, the prefix length and the rule number are respec-

tively set to be 24 and 128. The number of flows per second is

120. We present the change of servers’ load, space and num-

ber of flows through the controller.
Table 2

The real topologies.

Algorithm Topology Controller partaking

Switches Links Hosts Periods Add D

Chinanet 42 66 16 17 1357 8

Ibm 18 24 16 18 1365 8

York 23 24 16 16 1297 8
Fig. 7(a) shows the number of flows through the server

at each period. The load balance program uses periodical di-

vision and controller partaking to balance traffic between

servers. The method of periodical division takes 50 min to

complete update. Controller partaking of SARD takes only

4 min. Periodical division takes a longer time because it di-

vides the space of prefix and installs all the small pieces in

switches periodically regardless of the existing flows. After

the configuration update, the flows to server 1 are more than

server 2. As there are still some existing flows forwarded

according to the old configuration. During update, we shift

some traffic from the busy sever to another, that means mov-

ing space between servers. As Fig. 7(b) shows, the controller

partaking method in SARD is much faster than periodical

division.

However, there are also some problems in SARD. In SARD,

the flows affected by the configuration update must be for-

warded to the controller before arriving at the final server.

Thus controller partaking of SARD consumes some extra

memory, CPU and bandwidth of the controller. Fig. 7(c)

shows the number of flows through the controller in ev-

ery period. In the first period, the number of flows is about

1000 and in the second period, it is about 2000. But in

the remaining periods, the number becomes smaller and

smaller. Because as the configuration update proceeds, SARD

gets the network state and evaluate the volume of traffic.

It only chooses some appropriate pieces to update accord-

ing to these information which is collected in the previous

periods.

We also evaluate our algorithm on other real-world

topologies [9], such as Chinanet, IBM and York. The topol-

ogy properties, including the number of switches, links and

hosts, are shown in Table 2. We obtain the BGP table from

[25] and then generate an IP set accordingly. As the length

of these prefixes is not constant, we fix these prefixes with

the length 24 and set the left bits as zero. The results show

SARD is faster than the method of periodical division, which

is consistent with the above results. SARD takes less than 20

periods to complete the update and shift the traffic, but the

method of periodical division needs more than 300 periods.

During the update, SARD adds/deletes about 1300/900 rules
Divide periodically

elete Flows Periods Add Delete Flows

16 29,067 266 32,748 2852 0

72 27,933 296 37,448 3303 0

00 30,010 263 33,662 2781 0

Q. Li et al. / Computer Networks 92 (2015) 287–299 297
in the egress switch, while periodical division adds/deletes

about 32,000 and 3000 rules. That is to say, in the method

of periodical division, there are many rules that are timed

out and deleted automatically. Most of these added rules do

not play any role in packet forwarding. The controller in our

SARD needs to forward about 30000 flows during the up-

date. In SDN, there may be several hundreds of switches but

only several controllers. Using several powerful controllers to

strengthen the network ability is acceptable.

8. Related works

SDN is proposed to facilitate the evolution of network

and enable simple management. As it is developed inten-

sively and widely, SDN demonstrates the formidable vital-

ity and the superiority in some aspects, including meeting

the demand of network virtualization and cloud comput-

ing [26,27], combining with Information-Centric Networking

[28,29], composing hybrid network with traditional network

[7,30,31], etc.

There are various protocols and mechanisms of avoiding

transient undesired states when the planned update hap-

pens. Most of them focus on concrete protocol and only a

few are about SDN configuration update. In the paper [32],

the authors progressively adjust the metric associated with

this link to minimize disruption and ensure transient consis-

tency during the convergence of link-state interior gateway

protocols like OSPF. These methods only preserve the basic

properties like no-loop.

In SDN, the consistent update has been explored in [15].

The authors establish two criteria of consistent update mech-

anism: per-packet consistency and per-flow consistency. To

implement per-packet consistency, the controller stamps

packets with their configuration version at ingress switches

and tests for the version number in the core network. Reit-

blatt et al. [5] provide a network model and the two-phase

commit for per-packet consistency. When packets arriving

the network, the egress switch stamps packets with a ver-

sion number. In the core of the network, all rules in switches

use the version number as a match field and affect packets

with the same version number. After packets walk through

the network, the egress switch strips the version number

from packets. A weakness of this mechanism is that during

the configuration update, the old and new rules are both

installed in the network. In the worst case, this brings a

100% consumption of TCAM. Frenetic [33] uses this scheme

to guarantee consistency.

To reduce the cost of TCAM, an incremental update al-

gorithm [6], which splits the update into several rounds,

trade update time for rule-space overhead. In each round: (1)

choose a subset of flows which are moved from the old con-

figuration to the new one; (2) find new rules to be installed

according to the flows; (3) install rules using the two-phase

commit mechanism; (4) find old rules that are not used by

any flows and delete them. Multi-commit transactions [34]

are proposed to solve the problem which stems from the

inconsistent packet processing during network change. This

mechanism improves the classic techniques of the database

and provides the essential serialization and isolation prop-

erties. Vissicchio et al. [35] develop a method to complete

anomaly-free update in hybrid networks. The trade-off be-
tween the strength of consistent property and dependencies

among rules is argued in [36]. The controller generates an up-

date DAG according to the consistent property and topology,

which is complex and needs a number of computation. All

these methods concentrate on per-packet consistency.

The basic idea of combining version number with rules

timeout is proposed in [15]. Based on the paper, Reitblatt

et al. [5] propose three mechanisms to achieve the flow-level

consistency: (1) Switch rules with timeouts. This method di-

vides the rule space into pieces and installs the pieces in

switches dynamically over time. (2) Wildcard cloning. When

a packet coming into the network, the switch will generate a

small new rule to match the domain exactly. During the up-

date, existing flows are handled by the cloning rules. (3) End-

host feedback. The end host or server reports information of

existing flows to the controller and the controller use this

information to determine which flow is still alive. As open-

flow switch is very simple and has little intelligence, only the

switch rules with timeouts mechanism can be achieved. But

this mechanism takes a long time to complete the update. A

safe protocol [4] is suggested that the packets affected by the

network change should be sent to the controller, and then be

re-leased to the network after the change terminates. But this

mechanism will bring many burdens to the controller and the

control plane bandwidth. During the configuration update, it

will also cause the disruption of transmission and bring some

delay to the packet transmission.

Our mechanism is developed from the model proposed in

[5,16]. The model in [5,16] only focuses on a static configura-

tion and is used to help describe their mechanism. The net-

work formalism has been explored in the verification of net-

work functions [37]. We extended the network semantics to

include switch, updates and consistent priorities, so we could

prove flow-level consistent properties of our mechanism.

9. Conclusion

In this paper, we explore a new mechanism (SARD) that

makes the flow-level consistent configuration update in SDN

fast and efficient, by limiting the number of rules used

during the update and redirecting the packets affected to

the controller. We have presented a network update model

which captures the essential features of the SDN network

and controller-partaking method which preserves the flow-

level consistency. To avoid the explosion of the flow table, we

propose the K-prefix covering algorithm to computes K opti-

mal prefixes which cover all the existing flows with the mini-

mized space. We also do some optimization of shifting a part

of traffic from the old policy to the new one in each round,

only using controller-partaking approach to update the over-

lap between the old and the new rules. In addition, we also

discuss how to realize our mechanism in multi-controller

SDN. The results of our simulation show that our work makes

a significant influence on reducing the configuration update

time.

The incremental controller-partaking mechanism is pow-

erful and the network operators (programmers) do not need

to verify the properties during the transition between the

old configuration and the new one, as the property which

is preserved in both configurations holds for the flow dur-

ing the configuration update. The operators do not need to

298 Q. Li et al. / Computer Networks 92 (2015) 287–299
consider the interim complex and inconstant network states

during the configuration update. They can use our incremen-

tal controller-partaking mechanism to design arbitrary up-

date. They only need to guarantee the initial and final config-

urations are correct.

Acknowledgments

This work is supported by the National Research Pro-

gram of China (973) with no. 2012CB315803, the Na-

tional High-tech R&D Program of China (863) with no.

2014ZX03002004, the National Science Foundation of China

with no. 20149110081 and Shenzhen Key Laboratory of Soft-

ware Defined Network with no. ZDSYS20140509172959989.

References

[1] V. Gill, D. McPherson, A. Retana, D. Walton, Border Gateway Protocol

(BGP) Persistent Route Oscillation Condition, 2001, Internet draft.
[2] T.G. Griffin, G. Wilfong, Analysis of the MED oscillation problem in BGP,

in: Proceedings of the 10th IEEE International Conference on Network
Protocols (ICNP), Paris, France, 2002.

[3] N. McKeown, Keynote talk: software-defined networking, in: Proceed-
ings of INFOCOM the 28th IEEE International Conference on Computer

Communications, Rio de Janeiro, Brazil, 2009.

[4] R. McGeer, A safe, efficient update protocol for OpenFlow networks,
in: Proceedings of the First ACM SIGCOMM Workshop on Hot Topics

in Software Defined Networks, Helsinki, Finland, 2012.
[5] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, D. Walker, Abstrac-

tions for network update, in: Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer

Communication (SIGCOMM), Helsinki, Finland, 2012.

[6] N.P. Katta, J. Rexford, D. Walker, Incremental consistent updates, in:
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in

Software Defined Networks, Hong Kong, 2013.
[7] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R. Wat-

tenhofer, Achieving high utilization with software-driven WAN, in:
Proceedings of the ACM Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communication (SIGCOMM),
Hong Kong, 2013.

[8] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid prototyp-

ing for software-defined networks, in: Proceedings of the Ninth ACM
SIGCOMM Workshop on Hot Topics in Networks, Monterey, USA, 2010.

[9] The Internet Topology Zoo, http://topology-zoo.org/.
[10] D. Oppenheimer, A. Ganapathi, D.A. Patterson, Why do internet ser-

vices fail, and what can be done about it? in: Proceedings of USENIX
Symposium on Internet Technologies and Systems (USITS), Seattle,

USA, 2003.

[11] The openflow switch specification, http://OpenFlowSwitch.org.
[12] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown, S. Shenker,

Ethane: taking control of the enterprise, ACM SIGCOMM Comput. Com-
mun. Rev. 37 (4) (2007) 1–12.

[13] M. Casado, T. Garfinkel, A. Akella, M.J. Freedman, D. Boneh, N. McK-
eown, S. Shenker, SANE: a protection architecture for enterprise net-

works, in: Proceedings of the 15th USENIX Conference on Security

Symposium, Vancouver, Canada, 2006.
[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,

S. Shenker, NOX: towards an operating system for networks, ACM SIG-
COMM Comput. Commun. Rev. 38 (3) (2008) 105–110.

[15] M. Reitblatt, N. Foster, J. Rexford, D. Walker, Consistent updates for
software-defined networks: change you can believe in!, in: Proceed-

ings of the 10th ACM SIGCOMM Workshop on Hot Topics in Networks,

2011.
[16] P. Kazemian, G. Varghese, N. McKeown, Header space analysis: static

checking for networks, in: Proceedings of the Ninth USENIX Confer-
ence on Networked Systems Design and Implementation, San Jose,

USA, 2012.
[17] D. Levin, A. Wundsam, B. Heller, N. Handigol, A. Feldmann, Logically

centralized?: state distribution trade-offs in software defined net-

works, in: Proceedings of the First ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networks, Helsinki, Finland, 2012.

[18] A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, R. Kompella, Towards an
elastic distributed SDN controller, in: Proceedings of the Second ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networks,
Hong Kong, 2013.
[19] A. Tootoonchian, Y. Ganjali, HyperFlow: a distributed control plane for
openflow, in: Proceedings of the 2010 Internet Network Management

Conference on Research on Enterprise Networking, San Jose, USA, 2010.
[20] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-

manathan, Y. Iwata, H. Inoue, T. Hama, Onix: a distributed control plat-
form for large-scale production networks, in: Proceeding of the Ninth

USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Vancouver, Canada, 2010.
[21] S. Hassas Yeganeh, Y. Ganjali, Kandoo: a framework for efficient and

scalable offloading of control applications, in: Proceedings of the First
ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-

works, Helsinki, Finland, 2012.
[22] L. Lamport, Paxos made simple, ACM Sigact News 32 (4) (2001) 18–25.

[23] C. Williamson, Internet traffic measurement, IEEE Internet Comput. 5
(6) (2001) 70–74.

[24] Z. Xiao, L. Guo, J. Tracey, Understanding instant messaging traffic char-

acteristics, in: Proceedings of the 27th International Conference on Dis-
tributed Computing Systems (ICDCS), Vienna, Austria, 2007.

[25] Cidr Report, http://www.cidr-report.org/.
[26] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKe-

own, G. Parulkar, Flowvisor: A Network Virtualization Layer, Technical
Report, Deutsche Telekom Inc. R&D Lab, Stanford University, Nicira Net-

works, 2009.

[27] Z. Liu, Y. Li, L. Su, D. Jin, L. Zeng, M2cloud: software defined multi-site
data center network control framework for multi-tenant, in: Proceed-

ings of the ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM), Hong

Kong, 2013.
[28] D. Syrivelis, G. Parisis, D. Trossen, P. Flegkas, V. Sourlas, T. Korakis, L. Tas-

siulas, Pursuing a software defined information-centric network, in:

Proceedings of European Workshop on Software Defined Networking
(EWSDN), Darmstadt, Germany, 2012.

[29] L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, A. Detti, Support-
ing information-centric functionality in software defined networks,

in: Proceedings of IEEE International Conference on Communications
(ICC), Ottawa, Canada, 2012.

[30] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-

Shabibi, K.-C. Wang, J. Bi, Seamless interworking of SDN and IP, in:
Proceedings of the ACM Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communication (SIGCOMM),
Hong Kong, 2013.

[31] B. Rais, M. Mendonca, T. Turletti, K. Obraczka, Towards truly hetero-
geneous internets: bridging infrastructure-based and infrastructure-

less networks, in: Proceedings of the Third International Conference on

Communication Systems and Networks (COMSNETS), Bangalore, India,
2011.

[32] P. Francois, M. Shand, O. Bonaventure, Disruption free topology recon-
figuration in OSPF networks, in: Proceedings of the 26th IEEE Interna-

tional Conference on Computer Communications (INFOCOM), Anchor-
age, USA, 2007.

[33] N. Foster, A. Guha, M. Reitblatt, A. Story, M.J. Freedman, N.P. Katta,

C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, others, Languages for
software-defined networks, IEEE Commun. Mag. 51 (2) (2013) 128–134.

[34] P. Peresini, M. Kuzniar, N. Vasic, M. Canini, D. Kostic, OF. CPP: consistent
packet processing for openflow, in: Proceedings of the 2nd ACM SIG-

COMM Workshop on Hot Topics in Software Defined Networks, Hong
Kong, 2013.

[35] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie, O. Bonaventure, Safe up-
dates of hybrid SDN networks, Technical Report, UCL, 2013.

[36] R. Mahajan, R. Wattenhofer, On consistent updates in software defined

networks, in: Proceedings of the 12th ACM SIGCOMM Workshop on Hot
Topics in Networks, College Park, USA, 2013.

[37] R. McGeer, Verification of switching network properties using satisfi-
ability, in: Proceedings of IEEE International Conference on Communi-

cations (ICC), Ottawa, Canada, 2012.

Qing Li received the B.S. degree (2008) from

Dalian University of Technology, Dalian, China,

the Ph.D. degree (2013) from Tsinghua University,
Beijing, China; all in computer science and tech-

nology. He is currently an assistant researcher in
the Graduate School at Shenzhen, Tsinghua Uni-

versity. His research interests include reliable and
scalable routing of the Internet, Software Defined

Networks and Information Centric Networks.

http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0007
http://topology-zoo.org/
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0008
http://OpenFlowSwitch.org
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0021
http://www.cidr-report.org/
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0033
http://refhub.elsevier.com/S1389-1286(15)00345-X/sbref0033

Q. Li et al. / Computer Networks 92 (2015) 287–299 299
Kun Zhao received his B.S. degree (2012) from

Northwestern Polytechnical University, Xian, P.R.
China, the M.S. degree from Graduate School at

Shenzhen, Tsinghua University, Shenzhen, China;

both in computer science and technology. He is
now an IT engineer in Hangzhou, China. His re-

search interests include Future Internet and Soft-
ware Defined Networking.

Yong Jiang received his M.S. and Ph.D. degrees in
computer science from Tsinghua University, Bei-

jing, P.R. China, in 1998 and 2002, respectively.

Since 2002, he has been with the Graduate School
of Shenzhen of Tsinghua University, Guangdong,

China, where he is currently a professor. His re-
search interests include Internet architecture and

its protocols, IP routing technology, etc.
Mingwei Xu received the B.S. degree (1994)

and Ph.D. degree (1998) both from Department
of Computer Science and Technology, Tsinghua

University. Now he is a professor in Tsinghua

University. His research interests include future
network architectures, Internet Routing and

high-speed router architectures.

Shutao Xia received the B.S. degree in mathemat-
ics and the Ph.D. degree in applied mathemat-

ics from Nankai University, Tianjin, China, in 1992
and 1997, respectively. Since January 2004, he has

been with the Graduate School of Shenzhen of Ts-
inghua University, Guangdong, China, where he

is currently a professor. His current research in-

terests include coding theory, information theory,
and networking.

	SARD: A Smart Approach of Rule Division for fast flow-level consistent update in SDN
	1 Introduction
	2 Background and motivation
	3 The update model
	4 SARD: fast flow-level consistent update
	5 Algorithm design
	5.1 Definitions and theorems
	5.2 Minimum prefix covering algorithm
	5.3 Algorithm validity and complexity

	6 SDN with multiple controllers
	7 Evaluation results
	8 Related works
	9 Conclusion
	 Acknowledgments
	 References

